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Abstract— In this work we introduce several known and
new results on almost global stability. We focus on how
local properties of equilibrium points of dynamical systems
are related to the existence of density functions and to the
almost global stability property. We present some examples
that illustrate those results.

I. INTRODUCTION

Consider the autonomous differential equation

ẋ = f(x)

where f : Rn → Rn is a C1 field (enough to ensure the
existence and uniqueness of solutions to the initial value
problem) and f(0) = 0. In this context, a density function is
a function ρ ∈ C1(Rn\{0}, R) satisfying

∇ · (ρf) > 0 m-a.e.

where m is the Lebesgue measure. It can be proved than the
existence of a function satisfying this hypothesis globally,
plus being positive (adding some integrability conditions)
results on almost global stability of the system, meaning
that almost all trajectories of the system will converge to the
origin; by almost all, we refer to a set whose complement is
insignificant in the Lebesgue sense. This result can be found
in (Rantzer, 2001).

Theorem 1 (Rantzer). Given ẋ = f(x) satisfying f ∈
C1(Rn, Rn) and f(0) = 0, and if there exists ρ ∈
C1(Rn\{0}, R) non negative which satisfies ρ(x)f(x)/|x|
is integrable in {x : |x| ≥ ε} ∀ε > 0 and

∇ · (ρf) > 0 m-c.t.p.

Then, for almost every x0 ∈ Rn (in Lebesgue sense) the
solution x(t) of the differential equation with initial condition
x0 exists and it is well defined in [0,+∞) and also x(t) → 0
when t → +∞.

The previous Theorem has triggered a new research direc-
tion on nonlinear systems, about converse results, topological
restrictions and control applications (Rantzer, 2003; Monzón,
2003; Angeli, 2003; Prajna and Rantzer and Parrilo, 2004;
Angeli, 2004; Monzón, 2004). The paper is organized as
follows. In Section II, we introduce the monotone measures
and a particular result for two dimensional systems that we
want to generalize to higher dimensions; in Section III we
review some properties of density and Lyapunov functions;
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after that we present some motivating examples that show
how some hypothesis may be handled; the next Section deals
with the relevance of local stability for necessary conditions
for the existence of density functions. Finally, we present
some relationships between local properties of equilibrium
points and density functions and some concluding remarks.

II. MONOTONE MEASURES

The proof of this Theorem is based on the following
Lemma (similar to the Liouville’s Theorem):

Lema 2. Let f ∈ C1(D, Rn), with D ⊂ Rn open and let
ρ ∈ C1(D, R) integrable. For x0 ∈ Rn let f t(x0) be the
solution of ẋ = f(x) in the time t such that f0(x0) = x0.
Given a measurable set Z and assuming that fτ (Z) ⊂ D
∀τ ∈ [0, t] . Then∫

ft(Z)

ρ(x)dx−
∫

Z

ρ(x)dx =
∫ t

0

∫
fτ (Z)

[∇ · (ρf)](x)dxdτ

This Lemma, besides its use in the already mentioned
theorem, allows us to think of the density ρ as a measure
which grows on the trajectories defined by µ(E) =

∫
E

ρ.
We now give a definition, of a generalization of the notion
of densities:

Definition 1. Given a f ∈ C1(Rn, Rn) field, a Borel
measure µ is said monotone iff
• m � µ (meaning that ∀A such that µ(A) = 0 ⇒

m(A) = 0)
• ∀Y such that if 0 < µ(Y ) < ∞ then µ(Y ) < µ(f t(Y ))
∀t > 0.

• µ(Bc(0, ε)) < ∞ ∀ε > 0.

With arguments similar to the ones used by Rantzer in
(Rantzer, 2001), it can be proved that the existence of a
monotone measure allows us to ensure almost global stabil-
ity. Converse results about existence of monotone measures
have been introduced in (Monzón, 2004). It is also proved,
in (Monzón, 2005), that in dimension 2 the existence of a
measure with similar characteristics (less restrictive in the
sense of monotonicity but the measure must be bounded on
compact sets) added to almost global stability implies also
local asymptotical stability.

Theorem 3. Given the system ẋ = f(x) (f ∈ C2(R2, R2))
with a discrete set of fixed points. If there exists a measure
µ � m bounded (meaning that for any bounded set Y
µ(Y ) < ∞) satisfying that for every bounded set X such
that 0 < µ(X) there exists t 6= 0 such that µ(f t(X)) 6=
µ(X) then almost global stability at the origin implies local
asymptotical stability.



This result is important because to the effects of control
theory, almost global stability is not good enough, but is
very well complemented by local stability. This result is
not easily generalized to higher dimensions since it uses
Poincaré-Bendixson theory (Khalil, 1996) which stands in
properties intrinsic to the plane. We attempt here to give
some steps towards the generalization.

The following property relates the existence of a measure
with the existence of a density. In this property there is
no result on the regularity of the density, we only find an
L1(m) density whose induced measure grows with the flow.

Remark 1. We recall that by the Radon-Nikodym theorem,
given two σ−finite measures η,ν we can decompose η as
ρ + λ such that ρ � ν (see Definition 1 that implies that
ρ(E) =

∫
e
hdν for some h) and λ ⊥ ν (meaning that we

can decompose the space in two sets L and Lc such that
ν(L) = 0 and λ(Lc) = 0.

Property 4. Let f be a C1 field and µ a monotone measure
then if µ = ν + λ is µ’s decomposition with ν � m and
λ ⊥ m, so ν is monotone.

Proof: First we can observe that the differentiability
of the field ensures us that m(E) = 0 ⇒ m(f t(E)) = 0
∀t since it implies Lipschitz condition which can be used to
send a arbitrarily small cover of E by f t to again a arbitrarily
small cover of f t(E). There are two sets L and R such that
Rn = L∪R, ν(L) = 0 and λ(R) = 0. Then, using what we
just proved

ν(f t(L)) = 0 ∀t

Now, given Y such that 0 < ν(Y ) < ∞ we have that ∀t:

0 < ν(Y ) = ν(Y ∩R) = ν(Y ∩R ∩ f−t(R)) =

µ(Y ∩R ∩ f−t(R)) <

< µ(f t(Y ) ∩ f t(R) ∩R) = ν(f t(Y ) ∩ f t(R)) = ν(f t(Y ))

III. DENSITIES AND LYAPUNOV FUNCTIONS

In this Section we review some properties and relation-
ships between densities and Lyapunov functions. Some of
them appeared in (Rantzer, 2001).

Property 5. Given a C1 density ρ , it verifies limx→0 ρ(x) =
+∞ in a non integrable way.

Proof: If we consider the measure given by ρ, using
Lemma 2 it’s easy to see that it is monotone. Now, if we
consider the region of attraction of x = 0, we can see that it
is invariant by the field, then, since the measure given by ρ
is monotone, it must measure 0 or infinity, and since ρ can´t
be 0 almost everywhere we deduce that

∫
R ρ = ∞ (where R

is the region of attraction) then, since ρ is integrable on the
complement of every neighborhood of the origin we deduce
limx→0 ρ(x) = +∞.

Proposition 6. Given V (x) > 0 ∀x 6= 0 satisfying

α∇V · f < V∇ · f m− ctp

for some α > 0. Then for ρ(x) = V (x)−α we have∇·(ρf) >
0 m− ae.

Proposition 7. If for every x 6= 0, ρ satisfies

∇ · (ρf) > 0 ∇ · f ≤ 0 ρ > 0

Then V (x) = ρ(x)−1 satisfies ∇V · f < 0.

The proof of this properties is very simple and are based
on the formula

∇ · (ρf) = ∇ρf + ρ∇ · f

We present here the proof of Proposition 7 since it is
possible to generalize it for the case when the hypothesis
are satisfied locally (Lyapunov functions only need to be
defined locally).

Proof:

∇ · (ρf) = ∇ρf + ρ∇ · f > 0 m− a.e.

using positivity of ρ and that in a neighborhood of the origin
∇ · f ≤ 0 we have that V = ρ−1 > 0 implies ∇ρf ≥ 0 so

V̇ = ∇V f = −ρ−2(∇ρf) ≤ 0

IV. SOME MOTIVATING EXAMPLES

We attempt to make a step towards the generalization of
the result in Theorem 3. Also, we intend to add some extra
conditions on the fields to ensure local asymptotical stability,
or maybe, less ambitiously, local stability. Here we present
some examples of almost globally stable systems but not
locally asymptotically stable.

Example 1. This simple example shows how an almost
globally stable system, admitting a C1 density may not be
locally asymptotically stable. A not so trivial example can
be found in (Prajna and Rantzer and Parrilo, 2004).{

ẋ1 = −x3
1

ẋ2 = −x2
1x2

then for ρ = (x2
1 + x2

2)
−3 we have

∇ · (ρf) = 6(x2
1 + x2

2)
−4(x4

1 + x2
1x

2
2)− 4(x2

1 + x2
2)
−3x2

1 =

= 2(x2
1 + x2

2)
−3x2

1 > 0 m− a.e.

We see that in this example the origin is not an isolated
fixed point for the flow f t. That will be one of the expected
hypothesis for the system to be locally asymptotically stable.
Example 2. We show here that the field{

ẋ1 = x2
1 − x2

2

ẋ2 = 2x1x2

does not accept ρ = ‖x‖−α as a density function. We observe
that



Fig. 1. Trajectories for the system of Example 1. The dark line represents
the fixed points.

Fig. 2. Trajectories for the system of Example 2

∇ · (ρf) = ‖x‖−αx1(4− 2α)

so ρ can not be a density function for this system. We do
not know if the system admits a density function of other
kind.

V. NECESSARY CONDITION FOR ALMOST
GLOBAL STABILITY

We present in this section some results of great utility
which have appeared in (Monzón, 2003).

Theorem 8. Given a class C2 vector field f in Rn such that
the origin is an asymptotically stable equilibrium and such
that the region of attraction is the whole space. Then, there
exists a diffeomorphism of class C2 conjugating the system
ẋ = f(x) with ẏ = −y assuming the field is complete.

Remark 2. For the special case of n = 4 it is necessary to
add the hypothesis of the equilibrium being hyperbolic (see
(Monzón, 2003))

Remark 3. The hypothesis of being globally asymptotically
stable can be removed by a weaker one of being locally
asymptotically stable and in that case, the conjugacy will be
defined from the region of attraction of the origin and Rn.

In the proof of this theorem, the diffeomorphism is calcu-
lated explicitly from a diffeomorphism (H) between a level
manifold (E) of the Lyapunov function given by Massera’s
Theorem (Massera, 1949) and a n − 1 sphere in Rn in the
following way: given x ∈ R (the region of attraction) there
exists tx ∈ R such that f tx(x) ∈ E , in fact, tx is unique,
so we can send x 7→ g−tx(H(f tx(x))) = etxH(f tx(x)) or
reversely x 7→ gtx(H(f tx(x))) = e−txH(f tx(x)). We shall
call h1 to the first map, and h2 to the second, they satisfy:

h1 ◦ f t(x) = gt ◦ h1(x) , h2 ◦ f t(x) = g−t ◦ h2(x)

This diffeomorphism allow us to define a C1 density for
f(x) from a given density for the field g(y) = −y. However,
we must notice that this density will only be defined for the
region of attraction R; we are interested in extending it to
Rc in a way that the resulting density may be of class C1.
The density is defined from a density ρ for g in this way

ρ(x) = ρ(h1(x))
∣∣∣∣∂h1

∂x
(x)

∣∣∣∣
Theorem 9. The density is well defined

Proof: First of all , is easy to notice that it is non neg-
ative (taking into account that h1 is orientation preserving)
and is C1 in R\{0} since h1 is C2.

To see that ∇ · (ρf) > 0 c.t.p. we consider a measurable
set Z not containing the origin in its closure so:∫

Z
ρ(x)dx =

∫
Z

ρ(h1(x))
∣∣∣∣∂h1

∂x
(x)

∣∣∣∣ dx =
∫

h1(Z)

ρ(y)dy

Since h1 ◦ f t(x) = gt ◦ h1(x) we have ∀x ∈ R∣∣∣∣∂h1

∂x
(f t(x))

∣∣∣∣ ∣∣∣∣∂f t

∂x
(x)

∣∣∣∣ =
∣∣∣∣∂gt

∂x
(h1(x))

∣∣∣∣ ∣∣∣∣∂h1

∂x
(x)

∣∣∣∣
Then

∇ · (ρf) =
∂

∂t

{
ρ(f t(x)) ·

∣∣∣∣∂f t

∂x
(x)

∣∣∣∣}∣∣∣∣
t=0

=

∂

∂t

{
ρ(h1(f t(x))) ·

∣∣∣∣∂h1

∂x
(f t(x))

∣∣∣∣ · ∣∣∣∣∂f t

∂x
(x)

∣∣∣∣}∣∣∣∣
t=0

=

=
∂

∂t

{
ρ(gt(h1(x))) ·

∣∣∣∣∂gt

∂x
(h1(x))

∣∣∣∣ ∣∣∣∣∂h1

∂x
(x)

∣∣∣∣}∣∣∣∣
t=0

=

=
∣∣∣∣∂h1

∂x
(x)

∣∣∣∣∇ · (ρg)(h1(x)) > 0 c.t.p.

Remark 4. This procedure is valid in the other way, i.e. given
a density function for ẋ = f(x) we can build one for ẏ = −y
in an analogous way.

Using the previous results, it can be proved (Monzón,
2003) that global asymptotical stability implies the existence



of a C1 density function. We attempt to give a more general
result

keeping the hypothesis of local asymptotical stability and
changing global asymptotical stability for almost global
stability. The result is almost the same but the derivative
of the density we find may not be continuous in a region
of 0 Lebesgue measure, specifically in the complement of
the region of attraction of the origin. However, the density
we find is particular, in the sense that it is zero (and has
zero derivative although it may not be continuous) in this
region. After, we present an example from (Rantzer, 2001)
where an almost globally stable system (and not globally
asymptotically stable) admits a density which is strictly
positive everywhere.

Theorem 10. Given a complete differential equation ẋ =
f(x) with f ∈ C1 such that the origin is a almost globally
stable and locally asymptotically stable fixed point for the
flow f t, there exists a density ρ differentiable and with
continuous derivative up to a set of zero Lebesgue measure.
Also, this density can be constructed such that it is zero in
the complement of the basin of attraction.

Proof: We have defined a candidate for density in this
way

ρ(x) = ρ(h1(x))
∣∣∣∣∂h1

∂x
(x)

∣∣∣∣
Where ρ is a density for the field ẏ = −y. We want to see
that defined this way can be extended to the complement of
the basin of attraction Rc.

We know that given {xn}n∈N ⊂ R tal que xn → z ∈ Rc

we have that txn → +∞ so h1(xn) →∞ that means that if
we make ρ(y)

∣∣∂h1
∂x (h−1

1 (y))
∣∣ → 0 as y → ∞ we’ll achieve

continuity of ρ in Rc. Also we can see that:

∂ρ

∂x
(x) =

∂ρ

∂y
(h1(x))

∂h1

∂x
(x)

∣∣∣∣∂h1

∂x
(x)

∣∣∣∣+ρ(h1(x))∇
∣∣∣∣∂h1

∂x
(x)

∣∣∣∣
And this equation holds ∀x ∈ Rc. So, if we bound ρ and

∂ρ
∂y adequately we can make ρ of class C1.

This may not be possible, since we only have control on
ρ and we have to handle two inequalities, one to make the
derivative continuous and another one to ensure that ρ is a
density for the system ẏ = −y.

Let

j(r) = r2 sup
‖y‖≤r

{∣∣∣∣∂h1

∂x
(h−1

1 (y))
∣∣∣∣ ,

∥∥∥∥∇ ∣∣∣∣∂h1

∂x
(h−1

1 (y))
∣∣∣∣∥∥∥∥ ,

1
d(h−1

1 (y),Rc)

}
j is well defined, because Dr = {y : |y| ≤ r} is compact,

and the functions defined continuous (the one that could be
doubted is the distance but Rc is closed and h−1

1 (Dr)∩Rc =
∅ then inf{d(h−1

1 (y),Rc) > 0 ).
Now we define β : Rn → R C∞ increasing such that

outside some neighborhood of 0 satisfies β(y) > j(‖y‖)
(and be constant in ‖y‖ = constant) and such that β(0) = 0.
Then we have that β is a Lyapunov function for ẏ = −y.

Also, we can consider β to be convex in each direction,
that is, having in mind that β is defined radially that β(tx+
(1−t)y) ≤ tβ(x)+(1−t)β(y). We prove that if α > n, β−α

will be a density for ẏ = −y. It’s enough to see (because of
Proposition 6) that

−α∇β(y)y < ∇ · (−y)β(y) ⇒ α∇β(y)y > nβ(y)

But since the function is radial (its gradient is parallel to
the function g(y) = −y) we can verify the property in one
direction. So we see that

nβ(x1, 0, . . . , 0) < αx1
∂β

∂x1
(x1, 0, . . . , 0)

And it is easy to see that for a real valued convex function
w such that w(0) = 0 we have that w(x) ≤ xw′(x) so if
α > n we can have what we wanted.

Now, given {xn}n∈N ⊂ R such that xn → z ∈ Rc we
have

ρ(xn) = ρ(h1(xn))
∣∣∣∣∂h1

∂x
(xn)

∣∣∣∣ =

β−α(h1(xn))
∣∣∣∣∂h1

∂x
(xn)

∣∣∣∣ → 0

So ρ(x) = 0 ∀x ∈ Rc. To see that this function is differen-
tiable we consider z ∈ Rc and any sequence {xn}n∈N ⊂ R
(there is no problem considering the sequence in R since it
is zero in its complement) such that xn → z and we have

‖ρ(xn)− ρ(z)‖
‖xn − z‖

=
‖ρ(xn)‖
‖xn − z‖

=

β−α(h1(xn))
∣∣∂h1

∂x (xn)
∣∣

‖xn − z‖
→ 0

Since if α > 2

β−1(h1(xn))
∣∣∣∣∂h1

∂x
(xn)

∣∣∣∣ → 0

β−1(h1(xn))
‖xn − z‖

<
1

‖h1(xn)‖2
d(h−1

1 (h1(xn)),Rc)
‖xn − z‖︸ ︷︷ ︸

<1

→ 0

So we have that ρ is differentiable in all Rn, the continuity
of its derivative in R is immediate, but to have continuity in
all Rn we need that for some α

∂ρ

∂y
(y) = (−αβ−α−1(y))∇β(y)

goes to zero as fast as ρ when y →∞, since in this case

∂ρ

∂x
(xn) =

∂ρ

∂y
(h1(xn))

∂h1

∂x
(xn)

∣∣∣∣∂h1

∂x
(x)

∣∣∣∣
+ρ(h1(xn))∇

∣∣∣∣∂h1

∂x
(xn)

∣∣∣∣ → 0



Fig. 3. Phase portrait of the system of Example 3

Unfortunately this is not true in general since a convex
function can be constructed such that its derivative is larger
than any power of the function in a sequence going to infinity.

However, if β can be constructed satisfying that property
then the density will be C1.

We present an example from (Rantzer, 2001) showing
how for a system satisfying the hypothesis of the previous
Theorem it can be found a density function which is strictly
positive. It shows that it can exist a density which is non
zero in the complement of the basin of attraction (see figure
3).
Example 3. Consider the system{

ẋ1 = −2x1 + x2
1 − x2

2

ẋ2 = −6x2 + 2x1x2

for which ρ = ‖x‖−4 is a density function.

VI. CLASSIFICATION OF FIXED POINTS

In this Section we try to classify the possible behaviors of
the origin as a fixed point depending on the eigenvalues of the
derivative of the field in the origin. We can conclude that if
there is at least one with positive real part then almost global
stability is not possible. On the other hand the existence of
one eigenvalue with negative real part added to the existence
of a density function implies local asymptotical stability. This
will lead us to a generalization of Theorem 3.

Proposition 11. Let ẋ = f(x) with f ∈ C1(Rn, Rn) such
that ∂f

∂x (0) has at least one eigenvalue λ with Re(λ) > 0
then the set of points such that limt→∞ f t(x) = 0 has zero
Lebesgue measure.

Proof: This proof is based on the existence of local
invariant manifolds (Hirsch and Pugh and Shub, 1977). In
this case we are interested on the unstable manifold (given
by the expanding eigenvalues of the derivative of f ) and the
center stable manifold (W cs

loc(0)). This manifolds exist only
locally and has zero Lebesgue measure since its dimension
is strictly smaller than the dimension of the space. Also we

Fig. 4. A trajectory of the system of Example 4

know that if a point in Rn is to converge to the origin as
t → ∞ then for some n ∈ N fn(x) ∈ W cs

loc, so , we have
that the region of attraction of the origin is contained in⋃

n∈N f−n(W cs
loc) which is a countable union of sets with

zero measure so it has zero Lebesgue measure.

Proposition 12. Let ẋ = f(x) with f ∈ C1Rn, Rn such that
∂f
∂x (0) has all eigenvalues with Re(λ) ≤ 0 and at least one
with negative real part then the existence of a differentiable
density function implies local (asymptotical) stability.

Proof: The fact that the eigenvalues are as said implies
that ∇ · f < 0. Proposition 7 implies the existence of a
Lyapunov function.

We now present an example where we show that in the
remaining case, i.e. when all eigenvalues have null real part,
the result is not valid even in the case that the origin is an
isolated fixed point (in Example 1, it was already shown that
when the origin was not an isolated equilibrium a density
could be found).
Example 4.  ẋ1 = x2 − 2x1x

2
3

ẋ2 = −x1 − 2x2x
2
3

ẋ3 = −x3
3

The trajectories of this field are periodic orbits in the plane
x3 = 0 and spirals converging to the origin when the initial
condition in x3 is not 0 (see figure 4).

We can see that ∇ · f = −7x2
3 so, using ρ = (x2

1 +
x2

2 + x2
3)
−4 we have that ∇ · (ρf) = x2

3(x
2
1 + x2

2 + x2
3)
−4

that is indeed positive almost everywhere. Note that ∇· (ρf)
equals 0 in the plane x3 = 0, as could be expected since
f |x3=0 is not almost globally stable (for the system f |x3=0,
the set of points that not converge to zero have full measure if
we consider the Lebesgue measure in the plane). Although
the origin is not asymptotically stable, is a locally stable
equilibrium.

VII. CONCLUSIONS AND FUTURE WORKS
In this work we have put together several aspects of almost

global stability, monotone measures, density and Lyapunov



functions and local and global properties of equilibrium
points. We show how local stability plus almost global
stability of the origin can be combined in order to con-
struct a density function. We also gave a first step into
the generalization to higher dimensions of a planar result
about the relationships between almost global stability and
local asymptotical stability. We proved that the existence of
a positive eigenvalue of the Jacobian matrix at the origin
denies almost global stability. On the other hand, negative
divergence of the field at the origin together with a density
function implies local asymptotical stability. In future works
we will analyze the remaining case of zero divergence, trying
to establish conditions for local stability, as is motivated by
Example 4.
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