Sambarino Martín, Dr.
- Room:
Educación
Doctor en Matemática: Instituto de Matemática Pura e Aplicada (1998)
Biografía
El Dr. Martín Sambarino es investigador Grado 5 en el Area Matemática del PEDECIBA , investigador Nivel III del SNI y Profesor Titular (grado 5) del CMAT. Desempeña sus actividades en el Centro de Matemáticas, Facultad de Ciencias. Se doctoró en el IMPA.
Áreas de Investigación
-
-
Sistemas dinámicos caóticos
-
Sistemas hiperbólicos, parcialidad hiperbólica, descomposición dominada y bifurcaciones homoclínicas
-
Estudio de la existencia de propiedades dinámicas (tangencias homoclínicas, infinitos pozos, atractores extraños, conjuntos hiperbólicos, órbitas homoclínicas transversales).
-
Dinámica en Superficies.
-
Artículos Científicos
-
Le Calvez, P. ; Sambarino, M. Homoclinic orbits for area preserving diffeomorphisms of surfaces. Ergodic Theory Dynam. Systems 42 (2022), no. 3, 1122 -1165.
-
Koropecki, A.; Passeggi, A.; Sambarino, M. The Franks-Misiurewicz conjecture for extensions of irrational rotations. Ann. Sci. Ec. Norm. Super.(4) 54 (2021), no. 4, 1035 -1049.
-
Crovisier, S.; Potrie, R.; Sambarino, M. Finiteness of partially hyperbolic attractors with one-dimensional center. Ann. Sci. Ec. Norm. Super. (4) 53 (2020), no. 3, 559 - 588.
-
Passeggi,A.,Sambarino,M.(2019).DeviationsintheFranks-Misiurewicz conjecture. Ergodic Theory and Dynamical Systems, 40 (2020), no. 9, 2533 - 2540. doi:10.1017/etds.2019.8
-
A. Passeggi, R. Potrie, M. Sambarino, Rotation intervals and entropy on attracting annular continua. Geom. & Topol. 22 (2018), no. 4, 2145-2186.
-
Horita, Vanderlei; Sambarino, Martin; Stable ergodicity and accessibility for certain partially hyperbolic diffeomorphisms with bidimensional center leaves. Comment. Math. Helv. 92 (2017), no. 3, 467-512.
-
Sambarino, Mart ́ın; A (short) survey on dominated splittings. Mathematical Congress of the Americas, 149-183, Contemp. Math., 656, Amer. Math. Soc., Providence, RI, 2016.
-
S. Crovisier, M. Sambarino , D. Yang; Partial Hyperbolicity and Homo- clinic Tangencies. Journal of the European Mathematical Society, 17 (1), 2015, 1−45.
-
T. Fisher, R. Potrie, M. Sambarino, Dynamical coherence for partially hyperbolic diffeomorphisms of tori isotopic to Anosov. Mathematische Zeitchcrift 278 (2014) pp 149-168
-
A. Passeggi, M. Sambarino; Examples of minimal diffeomorphisms on T^2 semiconjugated to an ergodic translation. Fundamenta Mathematicae 222 (1), 2013, 63−97.
-
J. Buzzi, T. Fisher, M. Sambarino, C. V ́asquez. Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems. Ergodic Theory Dynam. Systems 32 (2012), no. 1, 63-79.
-
A. Rovella, M. Sambarino. The C1 closing lemma for generic C1 endomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(6) (2010), 1461 - 1469.
-
R. Markarian, E. Pujals, M. Sambarino; Pinball billiards with dominated splitting. Ergodic Theory Dynam. Systems 30(6) (2010), 1757 - 1786,
-
R. Potrie, M. Sambarino; Codimension one generic homolcinic classes with interior, Bull Braz. Math. Soc., New series 41(1), 2010, 125-138.
-
E. Pujals, M. Sambarino; Density of hyperbolicity and tangencies in sectional dissipative regions. Annales de l’Institut Henri Poincaré, Analyse non lineaire. 26 (2009), no. 5, 1971–2000.
-
M. Sambarino, J. Vieitez; C1 robustly expansive homoclinic classes are generically hyperbolic. Discrete and continuous Dynamical Systems,24 (2009), no. 4, 1325–1333.
-
E. Pujals, M. Sambarino; On the dynamics of Dominated Splitting. Annals of Mathematics, 169(3), 2009, p. 675- 739.
-
L. Diaz, V. Horita, I. Rios, M. Sambarino; Destroying twisted horseshoes via heterodimensional cycles. Ergodic Theory and Dynamical Systems, 29(2), 2009, p. 433-474.
-
M.J. Pac ́ıfico, E. Pujals, M. Sambarino, J. Vieitez; Robustly expansive codimension-one homoclinic classes are hyperbolic. Ergodic Theory and Dynamical Systems, 29(1) (2009), 179-200.
-
E. Pujals, M. Sambarino; Integrability on codimension one dominated splitting. Bulletim of the Brazilian Mathematical Society (2007), 38(1), 1-19.
-
E. Pujals, M. Sambarino; A suficient condition for robustly minimal foliations. Ergodic Theory and Dynamical Systems (2006), 26, 281-289.
-
Pujals, E., Sambarino, M., Homoclinic Bifurcations, Dominated Splitting and Robust transitivity Handbook of Dynamical Systems Vol 1B (2006), Eds. A. Katok, B. Hasselblatt, , Elsevier, Capitulo 4, 327-378.
-
M. Sambarino, J. Vieitez; On C1-persistently expansive homoclinic classes. Discrete and Continuous Dynamical Systems. (2006), 14(3), 465-481.
-
V. Baladı, E. Pujals, M. Sambarino; Dynamical zeta function for analytic surface diffeomorphisms with dominated splitting. Journal Inst. Math Jussieu. (2005) 4(2), 175-218.
-
G. Costakis, M. Sambarino; Genericity of wild holomorphic functions and common hypercyclic vectors. Advances in Math. 182 (2004), 278-306.
-
G. Costakis, M. Sambarino; Topologically mixing hypercyclic operators. Proc. AMS. 132 Vol 2 (2004), 385-389.
-
E. Pujals, M. Sambarino; Hyperbolicity and homoclinic tangencies for surface diffeomorphism. Ann. of Math. 151 (2000), 961-1023.
-
E. Pujals, M. Sambarino; On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and variation of entropy. Nonlinearity 13 (2000) 921-926
-
M. Cerminara, M. Sambarino; Stable and Unstable Sets of Co Perturbations of Expansive Homemorphism on Surfaces. Nonlineanearity 12 (1999) 321-332.
Libros y Notas de Cursos