Sambarino Martín, Dr.

Sambarino Martín, Dr.
Phone:
Int 130
Room:
Oficina 12, Piso 16

Educación

Doctor en Matemática: Instituto de Matemática Pura e Aplicada (1998)

Biografía

El Dr. Martín Sambarino es investigador Grado 5 en el Area Matemática del PEDECIBA , investigador Nivel III del SNI y Profesor Titular (grado 5) del CMAT.  Desempeña sus actividades en el Centro de Matemáticas, Facultad de Ciencias. Se doctoró en el IMPA.

Áreas de Investigación

  • Sistemas dinámicos caóticos

  • Sistemas hiperbólicos, parcialidad hiperbólica, descomposición dominada y bifurcaciones homoclínicas

  • Estudio de la existencia de propiedades dinámicas (tangencias homoclínicas, infinitos pozos, atractores extraños, conjuntos hiperbólicos, órbitas homoclínicas transversales).

  • Dinámica en Superficies.

Artículos Científicos

  1. Le Calvez, P. ; Sambarino, M. Homoclinic orbits for area preserving diffeomorphisms of surfaces. Ergodic Theory Dynam. Systems 42 (2022), no. 3, 1122 -1165. 

  2. Koropecki, A.; Passeggi, A.; Sambarino, M. The Franks-Misiurewicz conjecture for extensions of irrational rotations. Ann. Sci. Ec. Norm. Super.(4) 54 (2021), no. 4, 1035 -1049.

  3. Crovisier, S.; Potrie, R.; Sambarino, M. Finiteness of partially hyperbolic attractors with one-dimensional center. Ann. Sci. Ec. Norm. Super. (4) 53 (2020), no. 3, 559 - 588.

  4. Passeggi,A.,Sambarino,M.(2019).DeviationsintheFranks-Misiurewicz conjecture. Ergodic Theory and Dynamical Systems, 40 (2020), no. 9, 2533 - 2540. doi:10.1017/etds.2019.8

  5. A. Passeggi, R. Potrie, M. Sambarino, Rotation intervals and entropy on attracting annular continua. Geom. & Topol. 22 (2018), no. 4, 2145-2186.

  1. Horita, Vanderlei; Sambarino, Martin; Stable ergodicity and accessibility for certain partially hyperbolic diffeomorphisms with bidimensional center leaves. Comment. Math. Helv. 92 (2017), no. 3, 467-512.

  2. Sambarino, Mart ́ın; A (short) survey on dominated splittings. Mathematical Congress of the Americas, 149-183, Contemp. Math., 656, Amer. Math. Soc., Providence, RI, 2016.

  3. S. Crovisier, M. Sambarino , D. Yang; Partial Hyperbolicity and Homo- clinic Tangencies. Journal of the European Mathematical Society, 17 (1), 2015, 145.

  4. T. Fisher, R. Potrie, M. Sambarino, Dynamical coherence for partially hyperbolic diffeomorphisms of tori isotopic to Anosov. Mathematische Zeitchcrift 278 (2014) pp 149-168

  5. A. Passeggi, M. Sambarino; Examples of minimal diffeomorphisms on T^2 semiconjugated to an ergodic translation. Fundamenta Mathematicae 222 (1), 2013, 6397.

  6. J. Buzzi, T. Fisher, M. Sambarino, C. V ́asquez. Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems. Ergodic Theory Dynam. Systems 32 (2012), no. 1, 63-79.

  7. A. Rovella, M. Sambarino. The C1 closing lemma for generic C1 endomorphisms. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(6) (2010), 1461 - 1469.

  8. R. Markarian, E. Pujals, M. Sambarino; Pinball billiards with dominated splitting. Ergodic Theory Dynam. Systems 30(6) (2010), 1757 - 1786,

  9. R. Potrie, M. Sambarino; Codimension one generic homolcinic classes with interior, Bull Braz. Math. Soc., New series 41(1), 2010, 125-138.

  10. E. Pujals, M. Sambarino; Density of hyperbolicity and tangencies in sectional dissipative regions. Annales de l’Institut Henri Poincaré, Analyse non lineaire. 26 (2009), no. 5, 1971–2000.

  11. M. Sambarino, J. Vieitez; C1 robustly expansive homoclinic classes are generically hyperbolic. Discrete and continuous Dynamical Systems,24 (2009), no. 4, 1325–1333.

  12. E. Pujals, M. Sambarino; On the dynamics of Dominated Splitting. Annals of Mathematics, 169(3), 2009, p. 675- 739.

  13. L. Diaz, V. Horita, I. Rios, M. Sambarino; Destroying twisted horseshoes via heterodimensional cycles. Ergodic Theory and Dynamical Systems, 29(2), 2009, p. 433-474.

  1. M.J. Pac ́ıfico, E. Pujals, M. Sambarino, J. Vieitez; Robustly expansive codimension-one homoclinic classes are hyperbolic. Ergodic Theory and Dynamical Systems, 29(1) (2009), 179-200.

  2. E. Pujals, M. Sambarino; Integrability on codimension one dominated splitting. Bulletim of the Brazilian Mathematical Society (2007), 38(1), 1-19.

  3. E. Pujals, M. Sambarino; A suficient condition for robustly minimal foliations. Ergodic Theory and Dynamical Systems (2006), 26, 281-289.

  4. Pujals, E., Sambarino, M., Homoclinic Bifurcations, Dominated Splitting and Robust transitivity Handbook of Dynamical Systems Vol 1B (2006), Eds. A. Katok, B. Hasselblatt, , Elsevier, Capitulo 4, 327-378.

  5. M. Sambarino, J. Vieitez; On C1-persistently expansive homoclinic classes. Discrete and Continuous Dynamical Systems. (2006), 14(3), 465-481.

  6. V. Baladı, E. Pujals, M. Sambarino; Dynamical zeta function for analytic surface diffeomorphisms with dominated splitting. Journal Inst. Math Jussieu. (2005) 4(2), 175-218.

  7. G. Costakis, M. Sambarino; Genericity of wild holomorphic functions and common hypercyclic vectors. Advances in Math. 182 (2004), 278-306.

  8. G. Costakis, M. Sambarino; Topologically mixing hypercyclic operators. Proc. AMS. 132 Vol 2 (2004), 385-389.

  9. E. Pujals, M. Sambarino; Hyperbolicity and homoclinic tangencies for surface diffeomorphism. Ann. of Math. 151 (2000), 961-1023.

  10. E. Pujals, M. Sambarino; On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and variation of entropy. Nonlinearity 13 (2000) 921-926

  11. M. Cerminara, M. Sambarino; Stable and Unstable Sets of Co Perturbations of Expansive Homemorphism on Surfaces. Nonlineanearity 12 (1999) 321-332.

Libros y Notas de Cursos