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HeBREW UNIVERSITY

ON THE SHORTEST SPANNING SUBTREE OF A GRAPH
AND THE TRAVELING SALESMAN PROBLEM

JOSEPH B. KRUSKAL, JR.

Several years ago a typewritten translation (of obscure origin) of
[1] raised some interest. This paper is devoted to the following
theorem: If a (finite) connected graph has a positive real number
attached to each edge (the length of the edge), and if these lengths
are all distinct, then among the spanning! trees (German: Geriist)
of the graph there is only one, the sum of whose edges is a mini-
mum; that is, the shortest spanning tree of the graph is unique.
(Actually in [1] this theorem is stated and proved in terms of the
“matrix of lengths” of the graph, that is, the matrix ||a:;|| where ay;
is the length of the edge connecting vertices 4 and j. Of course, it is
assumed that a;;=a;; and that a:;;=0 for all < and j.)

The proof in [1] is based on a not unreasonable method of con-
structing a spanning subtree of minimum length. It is in this con-
struction that the interest largely lies, for it is a solution to a prob-
lem (Problem 1 below) which on the surface is closely related to one
version (Problem 2 below) of the well-known traveling salesman
problem.

ProBLEM 1. Give a practical method for constructing a spanning
subtree of minimum length.

ProBLEM 2. Give a practical method for constructing an un-
branched spanning subtree of minimum length.

The construction given in [1] is unnecessarily elaborate. In the
present paper I give several simpler constructions which solve Prob-
lem 1, and I show how one of these constructions may be used to
prove the theorem of [1]. Probably it is true that any construction

Received by the editors April 11, 1955.
1 A subgraph spans a graph if it contains all the vertices of the graph.
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which solves Problem 1 may be used to prove this theorem.

First I would like to point out that there is no loss of generality in
assuming that the given connected graph G is complete, that is, that
every pair of vertices is connected by an edge. For if any edge of G
is “missing,” an edge of great length may be inserted, and this does
not alter the graph in any way which is relevant to the present pur-
poses. Also, it is possible and intuitively appealing to think of missing
edges as edges of infinite length.

ConsTRUCTION A. Perform the following step as many times as
possible: Among the edges of G not yet chosen, choose the shortest
edge which does not form any loops with those edges already chosen.
Clearly the set of edges eventually chosen must form a spanning
tree of G, and in fact it forms a shortest spanning tree.

ConsTRUCTION B. Let V be an arbitrary but fixed (nonempty)
subset of the vertices of G. Then perform the following step as many
times as possible: Among the edges of G which are not yet chosen but
which are connected either to a vertex of V or to an edge already
chosen, pick the shortest edge which does not form any loops with
the edges already chosen. Clearly the set of edges eventually chosen
forms a spanning tree of G, and in fact it forms a shortest spanning
tree. In case V is the set of all vertices of G, then Construction B
reduces to Construction A.

ConsTRUCTION A’. This method is in some sense dual to A. Per-
form the following step as many times as possible: Among the edges
not yet chosen, choose the longest edge whose removal will not dis-
connect them. Clearly the set of edges not eventually chosen forms a
spanning tree of G, and in fact it forms a shortest spanning tree. It
is not clear to me whether Construction B in general has a dual
analogous to this.

Before showing how Construction A may be used to prove the
theorem of [1], I find it convenient to combine into a theorem a num-
ber of elementary facts of graph theory. The reader should have no
trouble convincing himself that these are true. For aesthetic reasons,
I state considerably more than I need.

PRELIMINARY THEOREM. If G is a connected graph with n vertices,
and T is a subgraph of G, then the following conditions are all equivalent:

(@) T is a spanning tree of G;

(b) T is a maximal? forest® in G;

A graph is “maximal” if it is not contained in any larger graph of the same sort;
it is “minimal” if it does not contain any smaller graph of the same sort.
3 A “forest” is a graph which does not have any loops.
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(c) T is a minimal?® connected spanning graph of G;
(d) T is a forest with n—1 edges;
(e) T is a connected spanning graph with n—1 edges.

The theorem to be proved states that if the edges of G all have dis-
tinct lengths, then T is unique, where T is any shortest spanning tree
of G. Clearly T may be redefined as any shortest forest with »—1
edges.

In Construction A, let the edges chosen be called a;, + + +, @p— in
the order chosen. Let 4 ; be the forest consisting of edges a; through a;.
It will be proved that T'=A,_;. From the hypothesis that the edges
of G have distinct lengths, it is easily seen that Construction A pro-
ceeds in a unique manner. Thus the 4; are unique, and hence also T.

It remains to prove that T=A,. If T#A4,4, let a; be the first
edge of A, which is not in T. Then ay, - - -, a; are in T. T\Ua;
must have exactly one loop, which must contain ;. This loop must
also contain some edge e which is not in A,_;. Then T\Ug;—e is a
forest with »—1 edges.

As A; 1\Ue is contained in the last named forest, it is a forest, so
from Construction A,

length (¢) > length (a;).
But then T\Ua;—e is shorter than T. This contradicts the definition
of T, and hence proves indirectly that T=4,;.
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