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Maestŕıa en matemática
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Abstract
In this thesis, we study orbifolds associated with Thurston maps. A Thurston map
is a branched covering map f : S2 → S2 on a 2-sphere such that each of its critical
points has a finite future orbit. The key contribution of our work is establishing the
strong relationship between Thurston maps with parabolic orbifolds and quotients of
torus endomorphisms (QOTEs). A QOTE is a branched covering map f : S2 → S2

such that there exists a degree d ≥ 2 self-covering map F : T 2 → T 2 on a torus that
is semiconjugated to f by a branched covering map ρ : T 2 → S2. We prove that every
QOTE has a parabolic orbifold, addressing a question initially posed in [1]. Additionally,
we show that Thurston maps with parabolic orbifolds and no periodic critical points are
QOTEs. For Thurston maps with hyperbolic orbifolds, we develop a new framework that
involves lifting these maps to covering maps on higher genus surfaces. This generalization
leads to the introduction of a new definition that extends the concept of QOTE, and
raises new questions.

Resumen
En esta tesis, estudiamos orbifolds associados a mapas de Thurston. Un mapa de
Thurston es un cubrimiento ramificado f : S2 → S2 en una 2-esfera tal que cada
uno de sus puntos cŕıticos tiene una órbita futura finita. La contribución clave de
nuestro trabajo es establecer la fuerte relación entre los mapas de Thurston con orb-
ifolds parabólicos y los cocientes de endomorfismos del toro (QOTEs). Un QOTE es
un cubrimiento ramificado f : S2 → S2 tal que existe un cubrimiento F : T 2 → T 2

de grado d ≥ 2 en un toro, que es semiconjugado a f por un cubrimiento ramificado
ρ : T 2 → S2. Demostramos que todo QOTE tiene un orbifold parabólico, abordando una
pregunta inicialmente planteada en [1]. Además, mostramos que los mapas de Thurston
con orbifolds parabólicos y sin puntos cŕıticos periódicos son QOTEs. Para los mapas de
Thurston con orbifolds hiperbólicos, desarrollamos un nuevo marco que implica levantar
estos mapas a cubrimientos ramificados en superficies de mayor género. Esta generali-
zación lleva a la introducción de una nueva definición que ampĺıa el concepto de QOTE,
y plantea nuevas preguntas.
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Agradezco a mis compañeros estudiantes de grado y posgrado. A todos los que
siempre están en el kinder, generando un hermoso ambiente de estudio. Gracias partic-
ulares a Elena, Jimmy, Bellati, Marcos y Alejo, porque fueron personajes muy presentes
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CHAPTER 1

Introduction

In this work we study orbifolds associated with Thurston maps. A Thurston map is
a branched covering map f : S2 → S2 on a 2-sphere S2 such that the postcritical set

post(f) =
⋃

n≥1
fn(crit(f))

is finite. Here crit(f) denotes the set of critical points of f .
As a simple example of Thurston map, consider the polynomial f(z) = 1 + (ω− 1)z3

extended as a map f : Ĉ → Ĉ on the Riemann sphere, where ω = e2iπ/3. Then, f has
exactly two critical points, namely 0 and ∞, each of which has local degree equal to 3.
Also, we have f(∞) = ∞, f(0) = 1 and f(1) = f(ω) = ω. Hence, post(f) = {1, ω,∞}.

All this information related to crit(f) and post(f) can be summarized in what we
call the ramification portrait of f :

∞ 0 1 ω3:1 3:1

The orbifold Of associated to a Thurston map f : S2 → S2 has S2 as underlying
surface, and post(f) as the set of singular points. The weight at each x ∈ S2 is computed
as

νf (x) = lcm
{
deg(fn, y) : y ∈ f−n(x), n ≥ 1

}
.

Note that this value is always an integer number, except when x is in a periodic orbit
that contains a critical point of f . In this case, the weight equals to ∞.

The Euler characteristic of Of is the number

χ(Of ) = 2 −
∑

x∈post(f)

(
1 − 1

νf (x)

)
.

In the given example, we have νf (∞) = ∞ and νf (1) = νf (ω) = 3. That is, Of is
the orbifold over the sphere with signature (3, 3,∞) and χ(Of ) = −1/3. In general, by
signature we mean the tuple (m1, . . . ,ms) of weights mi ≥ 2, increasingly ordered.

Another example of Thurston map is the rational map g : Ĉ → Ĉ given by g(z) =
1 − 2/z2. The ramification portrait is the following:

0 ∞ 1 −12:1 2:1

Hence, post(g) = {−1, 1,∞}, the signature of Og is (2, 4, 4), and χ(Og) = 0.

The Euler characteristic of the orbifold of a Thurston map f : S2 → S2 is always non-
positive (see Proposition 4.2). We classify the orbifold as parabolic when χ(Of ) = 0, and
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6 1. INTRODUCTION

hyperbolic when χ(Of ) < 0. In this thesis, we study Thurston maps based on whether
their orbifolds are parabolic or hyperbolic.

We begin our work by studying two-dimensional orbifolds in Chapter 2, exploring
their properties and showing their connection to group actions on surfaces.

The most significant contribution of our research is establishing the strong relation-
ship between Thurston maps with parabolic orbifolds and quotients of torus endomor-
phisms, a connection we describe below.

A quotient of torus endomorphism (QOTE) is a branched covering map f : S2 → S2

such that there is a torus endomorphism F : T 2 → T 2 of degree deg(F ) ≥ 2 and a
branched covering map ρ : T 2 → S2 such that f ◦ ρ = ρ ◦ F . We have the following
commutative diagram:

T 2 T 2

S2 S2

F

ρ ρ

f

Recall that a torus endomorphism is a self-covering map of a torus. It can be shown
that every QOTE is a Thurston map with no periodic critical points. See Proposition
3.2 and Proposition 3.5. The most important contribution of this thesis is the following:

Theorem 3.1 Let f be a QOTE. Then, Of is parabolic.

The question of whether every quotient of torus endomorphism has a parabolic orb-
ifold was originally posed in [1]. A positive answer to this question was provided in [2]
for specific cases of QOTEs, namely for those that are expanding. We do not need to
define this last condition here, as the proof we present is independent of it.

All the work leading to the proof of Theorem 3.1 is detailed in Chapter 3. Addition-
ally, this chapter includes examples and other notable properties of quotients of torus
endomorphisms.

Reciprocally, in Chapter 4 we begin with a Thurston map f : S2 → S2 with a
parabolic orbifold and no periodic critical points, and show that it is a QOTE. The fact
that such a map f can be lifted to a torus endomorphism was previously established in
[4]. However, here we provide a different proof of this result. See Theorem 4.3.

Afterwards, we address Thurston maps f : S2 → S2 with hyperbolic orbifolds. Our
goal is to lift such a map f to a covering map as well. However, in this case, higher genus
surfaces must be considered, which significantly alters the situation since these surfaces
do not admit self-covering maps like the torus does. Consequently, a Thurston map with
hyperbolic orbifold does not admit a self-covering map that is semiconjugated to it, in
the same manner as a QOTE does; see formula (2.2). This leads to the introduction
of a new definition that generalizes the concept of QOTE, involving towers of coverings
instead of just one covering map. The details of this concept are provided in Chapter 4.

We conclude this document with a discussion of problems and related questions in
Chapter 5.



CHAPTER 2

Orbifolds and branched covering maps

In this chapter we recall some definitions and results from covering space theory
that we will use throughout this work. This will also motivate the theory of branched
covering maps, which generalises the former one.

Related to covering maps and fundamental groups of surfaces, we would like to
obtain similar results for branched covering maps. This is where the concept of a (two-
dimensional) orbifold comes in to generalise the idea of a surface. For us, an orbifold
will be a surface with additional structure. In short, points in the surface will have a
number associated that we call the weight of the point.

The results concerning orbifolds presented here are likely standard, but clear ref-
erences for these results can sometimes be difficult to find. Consequently, some of the
proofs are original and provided without specific citations.

In Section 2.2, we introduce the concept of an orbifold covering map between orb-
ifolds, which generalizes the concept of covering maps between surfaces. We then intro-
duce the definition of the Euler characteristic of an orbifold, highlighting its multiplica-
tive property with respect to finite orbifold covers, similar to the case for surfaces. See
Lemma 2.7.

Next, we recall that a good orbifold is one that can be orbifold-covered by a surface.
Using covering space theory, one can show that any orbifold whose underlying surface S
has Euler characteristic χ(S) ≤ 1 is good. See Corollary 2.9. The case of orbifolds over
the sphere is more intricate because some of them are not good.

The universal branched cover for orbifolds is the analogous to the universal cover
for surfaces. This leads to the study of its group of deck transformations, which we
will refer to as the fundamental group of the orbifold. Unlike the case for surfaces, this
group does not act freely on the universal branched cover. This non-free action results in
branching points of the universal branched covering map, consistent with the structure
of the orbifold.

Motivated by the concept of the fundamental group of an orbifold, we further explore
group actions on surfaces and maps induced by such actions. Specifically, we study
quotient spaces by group actions. We then establish that a good orbifold can be regarded
as the quotient space of its universal branched cover by the action of its fundamental
group. See Corollary 2.17.

Additionally, we examine the relationship between orbifold covering maps and sub-
groups of the fundamental group. In particular, the relationship between the degree of
the orbifold covering map and the index of the subgroup. See Proposition 2.18.
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8 2. ORBIFOLDS AND BRANCHED COVERING MAPS

In section 2.5, we provide an extended definition of orbifolds, allowing them to include
points with weight equal to ∞. This extension is necessary for studying the orbifolds
associated with Thurston maps, which will be covered in subsequent chapters.

To conclude, we present two examples of orbifolds at the end of this chapter.

2.1. Branched coverings maps

2.1.1. Covering maps. We will start by briefly reviewing some definitions and
results from covering space theory. For more details, refer to [3]. Let Y and Z be
connected topological spaces. We say a map ρ : Z → Y is a covering map if for each
y ∈ Y there is an open neighborhood V ⊂ Y containing y such that ρ−1(V ) is a union
of disjoint open sets each of which is mapped homeomorphically onto V by ρ.

We will say ρ : Z → Y is a finite covering map if |ρ−1(y)| < ∞ for some y ∈ Y . In
this case, the cardinality of ρ−1(y) is independent of y. We call this number the degree
of ρ, an denote it by deg(ρ).

The fundamental group π1(Y, y0) of a space Y based at y0 ∈ Y is the group of
homotopy classes of loops based at y0 with the product induced by the concatenation
of loops. In what follows, if γ0, γ1 : [0, 1] → Y are two path with γ0(1) = γ1(0), we will
denote by γ0 ∗ γ1 their concatenation. Recall that any continuous map f : X → Y with
f(x0) = y0 induces a group morphism between the fundamental groups, that we will
denote by f∗ : π1(X,x0) → π1(Y, y0).

A lift of a continuous map f : X → Y with respect to a covering map ρ : Z → Y is a
continuous map f̂ : X → Z such that ρ◦ f̂ = f . About existence and uniqueness of lifts,
we have the propositions below. See [3, Proposition 1.33] and [3, Proposition 1.34].

Proposition 2.1. Let ρ : Z → Y be a covering map and f : X → Y a continuous
map where X is path-connected and locally path-connected. Suppose z0 ∈ Z and x0 ∈ X
are such that ρ(z0) = f(x0). Then, a lift f̂ : X → Z exists iff f∗π1(X,x0) ⊂ ρ∗π1(Z, z0).

Proposition 2.2. Let ρ : Z → Y be a covering map and f : X → Y a continuous
map. Suppose f̂0, f̂1 : X → Z are lifts of f and there is some x0 ∈ X such that
f̂0(x0) = f̂1(x0). Then, f̂1 = f̂0.

On the other hand, associated to each subgroup Λ < π1(Y, y0), there is a covering
map ρ : Z → Y such that ρ∗π1(Z, z0) = Λ. Besides, this covering map is unique up to
precomposition with a homeomorphism. This works under few assumptions, namely Y
must be path-connected, locally path-connected, and semilocally simply-connected. See
[3, Theorem 1.38].

A covering map ρ : X → Y associated to the trivial subgroup is called a universal
covering map of Y . As the morphism induced in the fundamental groups is an injection
for the case of covering maps, the space X will be simply connected.

2.1.2. Branched coverings maps between surfaces. LetX,Y be two connected
and oriented surfaces. All surfaces shall be assumed to be of finite type and without
boundary, unless otherwise stated. A continuous and surjective map f : X → Y is
called branched covering map if for every point y ∈ Y there is a topological disk V ⊂ Y
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containing y such that f−1(V ) can be written as a disjoint union

f−1(V ) =
⋃
i∈I

Ui

of open sets Ui ⊂ X with the following property. For every U = Ui there is a unique
x ∈ U ∩ f−1(y) and an integer d = di ≥ 1 such that the restriction f : U\{x} → V \{y}
is a covering map of degree d.

The number d ≥ 1 is called the local degree of f at x, and we will denote it by
deg(f, x). The set of critical points of f is

crit(f) =
{
x ∈ X : deg(f, x) ≥ 2

}
,

and the image of a critical point is called critical value of f . When Y = X, a postcritical
point of f is a point y ∈ Y such that y = fn(x) for some n ≥ 1 and x ∈ crit(f).
Consequently, the set of postcritical points of f is

post(f) :=
⋃

n≥1
fn(crit(f)).

On the other hand, one can consider the spaces Y⋆ := Y \f(crit(f)) and X⋆ :=
X\f−1(f(crit(f))), and the restriction f : X⋆ → Y⋆ results in a covering map. We
say the branched covering map f : X → Y is of degree deg(f) if the covering map
f : X⋆ → Y⋆ has degree deg(f).

Observe that the disk U ⊂ X as in the definition of branched covering map contains
at most one critical point and so the set crit(f) is discrete in X. Moreover, the following
holds for all y ∈ Y :
(2.1)

∑
x∈f−1(y)

deg(f, x) = deg(f).

The Riemann-Hurwitz formula states in addition that
(2.2) χ(X) +

∑
x∈crit(f)

(
deg(f, x) − 1

)
= deg(f)χ(Y ),

where χ(X) is the Euler characteristic of a compact surface X.

It is easy to see that composing branched covering maps f : X → Y and g : Y → Z
leads in another branched covering map g ◦ f : X → Z such that

deg(g ◦ f, x) = deg(g, f(x)) deg(f, x)
for all x ∈ X.

All these formulas can be found in [1, Section 2.1].

About lifting respect to branched covering maps, we have the statements below.
Refer to [1, Lemma A.19].

Lemma 2.3. (Lifting branched covering maps). Let ρ : Z → Y and p : X → Y be
branched covering maps. Suppose that X is simply connected and, whenever x ∈ X
and z ∈ Z verify p(x) = ρ(z), one has deg(ρ, z) | deg(p, x). Then, for all x0 ∈ X and
z0 ∈ Z with p(x0) = ρ(z0), there exists a branched covering map p̂ : X → Z such that
p̂(x0) = z0 and p = ρ ◦ p̂.
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So the following diagram commutes:
X

Z

Y

p

p̂

ρ

Lemma 2.4. (Uniqueness of lifts). Let ρ : Z → Y be a branched covering map.
Suppose p̂0, p̂1 : X → Z are discrete maps (the inverse image of a point is discrete )
such that ρ ◦ p̂0 = ρ ◦ p̂1 and there is some x0 ∈ X such that p̂0(x0) = p̂1(x0) =: z0 and
ρ(z0) ̸∈ ρ(crit(ρ)). Then, p̂1 = p̂0.

To finish, we prove the following proposition that relates finite covering maps in
punctured surfaces with finite branched covering maps in compact surfaces.

Proposition 2.5. Let X and Y be compact surfaces, x1, . . . , xr ∈ X and y1, . . . , ys ∈
Y . Consider the punctured surfaces X⋆ := X\{x1, . . . , xr} and Y⋆ := Y \{y1, . . . , ys}.
Then, any finite covering map f : X⋆ → Y⋆ can be extended to a branched covering map
f : X → Y .

Proof. We will call “dist” a distance in X and consider the restriction of it to X⋆.
The same name will be used for the distance in Y and Y⋆.

We first claim the map f : X⋆ → Y⋆ is proper. This means the inverse image of
a compact set K ⊂ Y⋆ is compact in X⋆. Note that the compact sets in X⋆ are the
compact sets in X that do not contain any of the punctures x1, . . . , xr. The same holds
for Y⋆. To prove f : X⋆ → Y⋆ is proper, we will show any sequence zn ∈ f−1(K) has an
accumulation point in f−1(K).

Since K is compact, the sequence f(zn) ∈ K has an accumulation point z ∈ K. For
ℓ ≥ 1, consider the ball B(z, 1/ℓ) ⊂ Y⋆, and extract a subsequence f(znℓ

) ∈ B(z, 1/ℓ).
Then, znℓ

∈ f−1(B(z, 1/ℓ)) and dist(f−1(B(z, 1/ℓ)), f−1(z)) → 0 as ℓ → ∞. Since
f−1(z) is a finite set, the sequence znℓ

must accumulate at some point ẑ ∈ f−1(z) ∈
f−1(K), which proves the claim.

Now we will show f : X⋆ → Y⋆ extends continuously to any x ∈ {x1, . . . , xr}.
Let ε0 > 0 be such that the connected components of B({y1, . . . , ys}, ε0) are the

balls B(y1, ε0), . . . , B(ys, ε0), and consider the set K := Y \B({y1, . . . , ys}, ε0). Since
K is a compact set of Y⋆, we know that f−1(K) is a compact set of X⋆. This implies
dist(x, f−1(K)) > 0, and so there is some δ0 > 0 such that B(x, δ0) ⊂ X\K. Since
f(B(x, δ0)\{x}) ⊂ B({y1, . . . , ys}, ε0) and B(x, δ0)\{x} is a connected set, there must
be some puncture y ∈ {y1, . . . , ys} such that f(B(x, δ0)\{x}) ⊂ B(y, ε0).

We claim that for all ε < ε0 there is some δ > 0 with f(B(x, δ)\{x}) ⊂ B(y, ε).
The same argument as the one given above shows that there is some δ > 0 such that
f(B(x, δ)\{x}) ⊂ B({y1, . . . , ys}, ε). We may assume δ < δ0. Then, f(B(x, δ)\{x}) ⊂
f(B(x, δ0)\{x}) ⊂ B(y, ε0), an so

f(B(x, δ)\{x}) ⊂ B({y1, . . . , ys}, ε) ∩B(y, ε0) = B(y, ε)
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as claimed. This proves f : X⋆ → Y⋆ extends continuously to x, when defining f(x) = y.

On the other hand, we also claim that the extension f : X → Y is onto. Indeed,
recall that the covering map f : X⋆ → Y⋆ is already onto. This gives Y⋆ ⊂ f(X).
Moreover, X is compact by hypothesis, and so it is f(X). It follows f(X) = Y .

To finish, we must show the local property of branched covering maps, at any punc-
ture x ∈ {x1, . . . , xr}. Let y = f(x) and D ⊂ Y be a small disk with y in its interior.
We may assume each point of f−1(y) belongs to a different connected component of
f−1(D). Call D̂ the connected component of f−1(D) containing x. Then, the restriction
f : D̂\{x} → D\{y} is a finite covering map. Since D\{y} is an annulus, we deduce
that D̂\{x} is also an annulus, and the covering f : D̂\{x} → D\{y} is d to 1 for some
d ≥ 1. □

2.2. Orbifolds and orbifold covering maps

To define an orbifold, we will use the approach presented in [1], which employs
ramification functions. Alternative definitions, often utilizing atlases, can be found in
the literature; see, for example, [8] and [7].

Let S be a surface. A map ν : S → N is said to be a ramification function on S if
its support

supp(ν) :=
{
x ∈ S : ν(x) ≥ 2

}
is a discrete set, and ν = 1 away from it. An orbifold is a pair O = (S, ν), where S is an
orientable surface (of finite type) and ν : S → N is a ramification function on S. We call
S the underlying surface of O, and the points x ∈ supp(ν) are called singular points of
weight ν(x). The signature of the orbifold is the tuple (m1,m2, . . .) of weights mi ≥ 2,
increasingly ordered.

Surfaces can be regarded as orbifolds without singular points. In what follows, we
will treat them as orbifolds and omit the orbifold notation.

Suppose Ô = (M, ν̂) and O = (S, ν) are two orbifolds. An orbifold covering map
ρ : Ô → O is a branched covering map ρ : M → S such that

ν(ρ(x̂)) = ν̂(x̂) deg(ρ, x̂), for all x̂ ∈ M.

Here we say that Ô orbifold covers O. An orbifold homeomorphism φ : Ô → O is a
homeomorphism φ : M → S such that ν(φ(x̂)) = ν̂(x̂) for all x̂ ∈ M .

Observe that an orbifold covering map ρ : M → S between surfaces is simply a
covering map in the usual sense since ρ must have constant local degree deg(ρ, x̂) = 1
when the ramification function ν has empty support. Thus, this definition generalises
the one of covering maps between surfaces.

An orbifold O is called good if it can be orbifold covered by a surface, that is, if there
exists an orbifold covering map ρ : M → O from a surface M . Figure 2.1 illustrates
a degree-two orbifold covering map from a genus-two surface to an orbifold O over the
torus of signature (2, 2). This shows O is a good orbifold.
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2

ρ
2

Figure 2.1. Illustration of a branched covering map ρ : M → T 2 from a
genus-two surface M onto a torus T 2. The map ρ is induced by identifying
points on M through a rotation of angle π around the given axis. The
map can be through as an orbifold covering map ρ : M → O, where O is
an orbifold over T 2 with two singular points of weight two.

Note that in the definition of a good orbifold we do not require the orbifold covering
map to be finite-sheeted. However, Theorem 2.11 asserts that it can be chosen to be
finite-sheeted.

An example of an orbifold that cannot be orbifold covered by a surface is O = (S2, ν),
where S2 is a sphere and supp(ν) has only one point x0. To see this, note that, if ρ : M →
O is an orbifold covering map from a surface, then ρ : M\ρ−1(ρ(crit(ρ))) → S2\{x0}
would be a non-trivial covering map. However, this cannot be the case as S2\{x0} has
a trivial fundamental group.

Another example of bad orbifold is the following. If O is an orbifold over S2 with
exactly two singular points of different weight, then O is not good. Refer to [7, Theorem
2.3], where the author lists all bad orbifolds.

A deck transformation of an orbifold covering map ρ : Ô → O is an orbifold homeo-
morphism φ : Ô → Ô such that ρ ◦ φ = ρ. Note that the set Γ of deck transformations
form a group under composition. We say ρ is a regular orbifold covering map if the
following holds: ρ(x̂1) = ρ(x̂0) iff there exists φ ∈ Γ such that φ(x̂0) = x̂1.

Proposition 2.6. Let ρ : Ô → O be a regular orbifold covering map. Then, for all
x ∈ S, the degree deg(ρ, ·) is constant on the fiber ρ−1(x).

Proof. Let x ∈ S and x̂0, x̂1 ∈ ρ−1(x). Then there is some deck transformation
φ : Ô → Ô such that φ(x̂0) = x̂1. We have ν̂(x̂1) = ν̂(φ(x̂0)) = ν̂(x̂0) because deck
transformation are orbifold homeomorphisms, hence

ν̂(x̂1) deg(ρ, x̂1) = ν(x) = ν̂(x̂0) deg(ρ, x̂0) = ν̂(x̂1) deg(ρ, x̂0).
It follows deg(ρ, x̂1) = deg(ρ, x̂0). □



2.3. UNIVERSAL BRANCHED COVERING MAP 13

Now we generalise the notion of Euler characteristic from that of surfaces. Recall
that the Euler characteristic of a genus g ≥ 1 surface with p ≥ 0 punctures is 2 − 2g− p.
The Euler characteristic of an orbifold O = (S, ν) with ramification function of finite
support is defined as

(2.3) χ(O) = χ(S) −
∑

x∈supp(ν)

(
1 − 1

ν(x)

)
.

Note that χ(O) is a rational number. In this work, we focus exclusively on orbifolds
with non-positive Euler characteristics. We classify such an orbifold O as parabolic if
χ(O) = 0 and hyperbolic if χ(O) < 0.

Lemma 2.7. Suppose ρ : Ô → O is a finite orbifold covering map. Then, χ(Ô) =
deg(ρ)χ(O).

Proof. We will follow the proof given in [1, Lemma 2.11]. Call d = deg(ρ). Using
formulas (2.1) and (2.2), we get

χ(M) − χ(Ô) =
∑

x̂∈M

(
1 − 1

ν̂(x̂)

)
=
∑

x̂∈M

(
1 − deg(ρ, x̂)

ν(ρ(x̂))

)

=
∑

x̂∈M

(1 − deg(ρ, x̂)) +
∑

x̂∈M

deg(ρ, x̂)
(

1 − 1
ν(ρ(x̂))

)

= χ(M) − dχ(S) +
∑
x∈S

∑
x̂∈ρ−1(x)

deg(ρ, x̂)
(

1 − 1
ν(ρ(x̂))

)

= χ(M) − dχ(S) +
∑
x∈S

(
1 − 1

ν(x)

) ∑
x̂∈ρ−1(x)

deg(ρ, x̂)

= χ(M) − dχ(S) +
(
χ(S) − χ(O)

)
d

= χ(M) − dχ(O)
and the statement follows. □

2.3. Universal branched covering map

A universal branched covering map for an orbifold O = (S, ν) is a branched covering
map p : X → S where X is a simply connected surface and

deg(p, x̃) = ν(p(x̃)), for all x̃ ∈ X.

In other words, ρ : X → O is an orbifold covering map from a simply connected surface.
We call the spaceX a universal branched cover for O. In particular, an orbifold admitting
a universal branched cover is good.

Observe also that any good orbifold O admits a universal branched cover. Indeed,
suppose ρ : Y → O is an orbifold covering map, where Y is a surface. Let X be the
universal cover of Y , and let p̂ : X → Y be a covering map. Then, p := ρ◦ p̂ is a universal
branched covering map for O.

As a simple example of universal branched cover, consider an orbifold O = (D, ν),
where D is an open disk with only one singular point x0 ∈ D of weight ν(x0) = n ≥ 2.
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Recall the fundamental group of D⋆ := D\{x0} can be identified with Z. Associated to
the subgroup nZ < Z, there is a covering map p : D⋆ → D⋆ with deg(p) = [Z : nZ] = n.
Moreover, this map extends to a branched covering map p : D → D, with deg(p, x0) = n
and deg(p, z) = 1 for all z ∈ D⋆. Then, p : D → D is a universal branched covering map
for O.

In the following theorem, we extend the approach used in the previous example to
obtain a universal branched covering map for more general cases.

Theorem 2.8. Let D be an open disk. Then, any orbifold O = (D, ν) is good.

Proof. Let {yi}i∈I be the points in supp(ν). Since it is a discrete set in D, we may
take balls Bi = B(yi, εi) of disjoint closure. Let N be the disk D minus those balls. For
each i ∈ I, let σi : [0, 1] → N be a simple closed curve parametrizing ∂Bi.

Fix a basepoint b0 ∈ N and let δi : [0, 1] → N be a path starting at b0 and ending at
σi(0). Then, each loop γi := δi ∗ σi ∗ δ−1

i has an associated element in the fundamental
group π1(N, b0). Moreover, the homotopy classes of these loops generate the group.

Let F < π1(N, b0) be the normal subgroup generated by the homotopy classes of all
the curves γνi

i , where νi := ν(yi). Associated to this subgroup, there is a covering map
ρ : M → N . More specifically, there is some b̂0 ∈ ρ−1(b0) such that ρ∗π1(M, b̂0) = F .

Since ρ is a local homeomorphism, M is a surface with boundary and ∂M = ρ−1(∂N).
Since ρ is a regular covering map, and since and there is some loop in M lifting γνi

i ,
it follows every ρ-lift of γνi

i is a loop. We claim that this also implies that any path
σ̂ : [0, 1] → M lifting σνi

i is a loop. Indeed, let δ̂ : [0, 1] → M be the lift of δi ending
at σ̂(0) and δ : [0, 1] → M be the one ending at σ(1). Then, the path δ̂ ∗ σ̂ ∗ δ−1 lifts
δi ∗ σνi

i ∗ δ−1
i = γνi

i and, consequently, it must be a loop. It follows δ̂(0) = δ(0) and, by
uniqueness of path lifts, this gives δ̂(1) = δ(1). Thus, σ̂(0) = σ̂(1).

This proves that every boundary component C ⊂ ∂M of M can be parametrized by
a simple loop σ̂ : [0, 1] → C. Let i ∈ I be such that ρ(C) ⊂ ∂Bi. We want to show ρ ◦ σ̂
is homotopic to σνi

i . We know there exist some k ≥ 1 such that ρ ◦ σ̂ is homotopic to
σk

i . This is because the restriction of ρ to C is a covering map from C onto ∂Bi. Note
then that γk

i belongs to F . Since π1(M, b̂0) is the free group generated by the homotopy
clasess of the γi’s, it follows that k ≥ νi. Otherwise γk

i ∈ F would give a relation in the
group. What is more, it cannot be the case that k > νi as this would imply that γνi

i lifts
to an open path. We conclude that k = νi.

We have shown that any boundary component Cij ⊂ ρ−1(∂Bi) is a circle that is
mapped νi-to-one onto ∂Bi by ρ. Then, we can cap a closed disk Dij by its boundary
in Cij and extend ρ to it in such a way that ρ maps the interior disk Dij onto Bi, and
the restriction ρ : Dij\{ŷij} → Bi\{yi} is a covering map of degree νi between annuli,
for some ŷij ∈ Dij .

Let Y be the surface obtained by capping disks at the boundary components of M ,
and ρ : Y → D be the extension defined above. Then, ρ : Y → D is a branched covering
map and deg(ρ, ŷ) = νi for all ŷ ∈ ρ−1(yi) and i ∈ I. Then, ρ : Y → O is an orbifold
covering map. □

Corollary 2.9. Any orbifold O = (S, ν) with χ(S) ≤ 1 is good.
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Proof. Since χ(S) ≤ 1, the universal cover of S is the open disk. Let p : D → S be
a covering map. Then, p induces an orbifold O′ = (D, ν ′) by defining ν ′(x̂) = ν(p(x̂)).
By Theorem 2.8, there is some orbifold covering map ρ : Y → O′, where Y is a surface.
Then, p ◦ ρ : Y → O is an orbifold covering map. □

For the following theorem, refer to [1, Theorem A.26].

Theorem 2.10. Let O = (S2, ν) be a parabolic or hyperbolic orbifold over a sphere
S2. Then, O has a universal branched cover.

To conclude, we refer to [7, Theorem 2.5], emphasizing that the orbifold covering
map mentioned in the statement is finite:

Theorem 2.11. Every good, compact orbifold is finitely covered by a surface.

2.3.1. Uniqueness of the universal branched covering map. Same as in the
case of surfaces, one can show that the universal branched covering map is unique up
to precomposition with an orientation preserving homeomorphism. See Corollary 2.13.
Also, the universal branched covering map is universal in the following sense:

Theorem 2.12. Let ρ : Ô → O be an orbifold covering map and suppose p : X → O
is a universal branched covering map for O. Then, whenever x̃0 ∈ X and x̂0 ∈ M
verify p(x̃0) = ρ(x̂0) =: x0, there exists an orbifold covering map p̂ : X → Ô such that
p̂(x̃0) = x̂0 and p = ρ ◦ p̂. Moreover, if ν(x0) = 1, then the map p̂ is unique.

So the following diagram commutes:
X

Ô

O

p

p̂

ρ

Proof. This proof is an adaptation of the one given for [1, Theorem A.28].
Observe that whenever x̃ ∈ X and x̂ ∈ M verify p(x̃) = ρ(x̂), we have

deg(ρ, x̂)ν̂(x̂) = ν(ρ(x̂)) = ν(p(x̃)) = deg(p, x̃).

Then, deg(ρ, x̂) | deg(p, x̃) and Lemma 2.3 gives the existence of a branched covering
map p̂ : X → M such that p̂(x̃0) = x̂0 and p = ρ ◦ p̂. We only need to check p̂ satisfies
the orbifold covering condition. Given x̃ ∈ X, call x̂ = p̂(x̃) and x = ρ(x̂). Then,

deg(p̂, x̃) deg(ρ, x̂) = deg(p, x̃) = ν(x) = ν̂(x̂) deg(ρ, x̂) = ν̂(p̂(x̃)) deg(ρ, x̂),

and deg(p̂, x̃) = ν̂(p̂(x̃)) as desired.
The uniqueness part comes from Lemma 2.4. □

Observe that the map p̂ : X → Ô given in Theorem 2.12 is a universal branched
covering map for Ô. The following corollary can be found as [1, Corollary A.29].



16 2. ORBIFOLDS AND BRANCHED COVERING MAPS

Corollary 2.13. (Uniqueness of the universal branched covering map). Suppose
p : X → O and p′ : X ′ → O are universal branched covering maps. Then, whenever
p(x̃0) = p′(x̃′

0) =: x0 there exists an orientation preserving homeomorphism h : X → X ′

such that h(x̃0) = x̃′
0 and p = p′ ◦ h. Moreover, h is unique if ν(x0) = 1.

Proof. By Theorem 2.12 there is a covering map h : X → X ′ such that h(x̃0) = x̃′
0

and p = p′ ◦ h. Choose x1 ∈ S with ν(x1) = 1. Then the fiber p−1(x1) has no critical
points. Take x̃1 ∈ p−1(x1) and call x̃′

1 := h(x̃1). Note that p′(x̃′
1) = p′ ◦ h(x̃1) = p(x̃1).

Again by Theorem 2.12 there is a covering map g : X ′ → X such that g(x̃′
1) = x̃1 and

p′ = p ◦ g.
Since p◦g◦h = p and g◦h(x̃1) = g(x̃′

1) = x̃1 where ν(p(x̃1)) = ν(x1) = 1, uniqueness
of Theorem 2.12 gives g ◦ h = id. On the other hand, we also have p′ ◦ h ◦ g = p′ and
h ◦ g(x̃′

1) = h(x̃1) = x̃′
1 where ν(p′(x̃′

1)) = ν(p(x̃1)) = ν(x1) = 1. Again, uniqueness of
lifts implies h ◦ g = id.

From g ◦h = h◦g = id one concludes h is a homeomorphism with inverse g. Because
h is a covering map, it is necessarily orientation-preserving. □

Corollary 2.14. Let O be an orbifold and let p : X → O be a universal branched
covering map. Then, p is a regular orbifold covering map.

Proof. If p(x̃1) = p(x̃0), then by Corollary 2.13 there exists an orientation preserv-
ing homeomorphism φ : X → X such that φ(x̃0) = x̃1 and p = p ◦ φ. In other words,
there exists a deck transformation φ : X → X of p such that φ(x̃0) = x̃1.

Conversely, if there exists a deck transformation φ : X → X of p such that φ(x̃0) =
x̃1, then p(x̃1) = (p ◦ φ)(x̃0) = p(x̃0). □

2.3.2. The fundamental group of an orbifold. The group of deck transforma-
tions of a universal branched covering map p : X → O will be denoted by π1(O, p).
As stated in the lemma below, up to isomorphism, this group does not depend on the
map p, but only on the orbifold O. We call this group the fundamental group of O, and
denote it by π1(O).

Lemma 2.15. Suppose p : X → O and p′ : X ′ → O are universal branched covering
maps. Then, the groups π1(O, p) and π1(O, p′) are isomorphic.

Proof. Denote Γ = π1(O, p) and Γ′ = π1(O, p′). As in Corollary 2.13, let h : X →
X ′ be a homeomorphism such that p = p′ ◦ h. For φ ∈ Γ, we define Φ(φ) := h ◦φ ◦ h−1.
Note that Φ(φ) is a deck transformation for p′:

p′ ◦ Φ(φ) = p′ ◦ h ◦ φ ◦ h−1 = p ◦ φ ◦ h−1 = p ◦ h−1 = p′.

It is straightforward to check that Φ : Γ → Γ′ is a group isomorphism. □

2.4. Group actions on surfaces

Let X be a surface and Γ be a group of orientation-preserving homeomorphisms
acting on X. Then, Γ induces an equivalence relation in X given by x̂0 ∼ x̂1 iff there
exists φ ∈ Γ such that φ(x̂0) = x̂1. We denote the quotient space by X/Γ, and equip it
with the quotient topology. Consider π : X → X/Γ the quotient map.
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A map p : X → S is said to be induced by Γ if the following holds: p(x̂1) = p(x̂0) iff
there exists φ ∈ Γ such that φ(x̂0) = x̂1. In particular, p ◦ φ = p for all φ ∈ Γ.

Observe that Corollary 2.14 states that a universal branched covering map is induced
by its group of deck transformations. The following result can be found stated more
generally as [1, Corollary A.23].

Lemma 2.16. Let Γ be a group acting on a surface X and π : X → X/Γ be the
associated quotient map. Suppose p : X → S is a branched covering map induced by Γ.
Then, there exists a unique homeomorphism θ : X/Γ → S such that p = θ ◦ π.

Now suppose p : X → S is a branched covering map induced by a group Γ. We will
equip S with an orbifold structure as follows. Let x ∈ S and x̂0, x̂1 ∈ p−1(x). Since
there exists φ ∈ Γ such that φ(x̂0) = x̂1, we see that

deg(p, x̃1) = deg(p, φ(x̂0)) = deg(p ◦ φ, x̂0) = deg(p, x̃0).

This means the local degree deg(p, ·) is constant in each fiber p−1(x). One can then
define an orbifold O = (S, ν) with ramification function given by

ν(x) := deg(p, x̂), for x̂ ∈ p−1(x).

In this way, the map p : X → O is a regular orbifold covering map. Moreover, if X
is simply connected, then p is a universal branched covering map for O, and Γ is the
fundamental group of O.

In particular, if Γ is a group acting on a simply connected surface X in such a way
that the quotient map π : X → X/Γ is a branched covering map, we will automatically
endow X/Γ with the orbifold structure described above.

The following corollary tells us that every good orbifold can be thought as the quo-
tient of its universal branched cover by the action of the fundamental group.

Corollary 2.17. Let O = (S, ν) be a good orbifold and p : X → S be a universal
branched covering map for O. Consider the group Γ = π1(O, p) and the orbifold O′ =
(X/Γ, ν ′) induced by the quotient map π : X → X/Γ. Then, there exists a unique
orbifold homeomorphism θ : O′ → O such that p = θ ◦ π.

Proof. By Corollary 2.14, we know p is induced by Γ. Then, Lemma 2.16 gives the
existence of a homeomorphism Θ : X/Γ → S such that p = Θ ◦ π. Let x ∈ X/Γ and
x̂ ∈ π−1(x). Since p(x̂) = (Θ ◦ π)(x̂) = Θ(x) and deg(Θ, ·) = 1, we get

ν(Θ(x)) = deg(p, x̂) = deg(Θ ◦ π, x̂) = deg(π, x̂) = ν ′(x).

This proves that Θ is an orbifold homeomorphism. □

2.4.1. Subgroup actions on surfaces. Again suppose p : X → S is a branched
covering map induced by a group Γ, and let Λ < Γ be a subgroup. Consider the quotient
space M := X/Λ and the quotient map p̂ : X → M . Note that p̂(x̃1) = p̂(x̃0) implies
p(x̃1) = p(x̃0) since Λ ⊂ Γ. We can then define a natural map ρ : M → S as

ρ(x̂) = p(x̃), for x̃ ∈ p̂−1(x̂).

Clearly one has p = ρ ◦ p̂.
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As discussed before, we have associated orbifold structures O = (S, ν) and Ô =
(M, ν̂) given by the maps p and p̂. We claim that the natural map ρ : Ô → O is an
orbifold covering map. Indeed, given x̂ ∈ M , call x := ρ(x̂) and choose any x̃ ∈ p̂−1(x̂).
We see that

ν(x) = deg(p, x̃) = deg(ρ ◦ p̂, x̃) = deg(p̂, x̃) deg(ρ, x̂) = ν̂(x̂) deg(ρ, x̂)
as claimed.

Proposition 2.18. The map ρ : M → S defined above has deg(ρ) = [Γ : Λ].

Proof. Fix x0 ∈ X/Γ such that ν(x0) = 1 and x̃0 ∈ p−1(x0). We want to prove
that |ρ−1(x0)| = [Γ : Λ], and we will show there exists a bijection Φ : Λ\Γ → ρ−1(x0),
where Λ\Γ = {Λ ◦ φ : φ ∈ Γ} is the set of right cosets. Since p̂ ◦ ψ = p̂ for all ψ ∈ Λ, it
makes sense to define Φ as Φ(Λ ◦ φ) = (p̂ ◦ φ)(x̃0).

To prove injectivity, suppose Φ(Λ ◦ φ) = Φ(Λ ◦ φ′). Then p̂(φ′(x̃0)) = p̂(φ(x̃0)) and
there exists ψ ∈ Λ such that ψ(φ(x̃0)) = φ′(x̃0). Then φ′ ◦ (ψ ◦φ)−1 ∈ Γx̃0 = {id}, which
gives φ′ = ψ ◦ φ and Λ ◦ φ′ = Λ ◦ φ. To prove Φ is onto, let x̂1 ∈ ρ−1(x0) and choose
any x̃1 ∈ p̂−1(x̂1). Since p(x̃1) = p(x̃0), there is some φ ∈ Γ such that φ(x̃0) = x̃1 and it
follows Φ(Λ ◦ φ) = x̂1. □

We now prove a general fact about groups that we will use later.

Lemma 2.19. Let Γ be a group and Λ a subgroup of finite index. If H is another
subgroup of Γ, then [H : H ∩ Λ] ≤ [Γ : Λ].

Proof. Let H/(H ∩ Λ) = {(H ∩ Λ) ◦ h : h ∈ H} and Γ/Λ = {Λ ◦ φ : φ ∈ Γ}. It
suffices to define an injective map Φ : H/(H ∩ Λ) → Γ/Λ.

Suppose h, h′ ∈ H are such that (H ∩Λ)◦h′ = (H ∩Λ)◦h. Then, h′ = ψ ◦h for some
ψ ∈ H ∩ Λ. In particular, h′ = ψ ◦ h for some ψ ∈ Λ, and so Λ ◦ h′ = Λ ◦ h. It follows
there is a well defined map Φ : H/(H ∩ Λ) → Γ/Λ such that Φ((H ∩ Λ) ◦ h) = Λ ◦ h.

To prove injectivity, assume Φ((H ∩Λ)◦h′) = Φ((H ∩Λ)◦h). That is, Λ◦h′ = Λ◦h,
and so h′ = ψ ◦ h for some ψ ∈ Λ. Since ψ = h′ ◦ h−1 ∈ H, we get ψ ∈ H ∩ Λ, and
conclude that (H ∩ Λ) ◦ h′ = (H ∩ Λ) ◦ h. □

2.5. Extended orbifolds

The definition of an orbifold O = (S, ν) can be extended by allowing the ramification
function to take values in N ∪ ∞. In this case, points with weight equal to ∞ should be
regarded as punctures in S. We will use the notation

S∗ := S\{x ∈ S : ν(x) = ∞}
for the punctured surface, and also

supp∗(ν) := supp(ν)\{x ∈ S : ν(x) = ∞}.
The Euler characteristic of such an orbifold is defined in the same way as in 2.3,

considering 1/∞ = 0. For example, an orbifold over the sphere O = (S2, ν) with only
two points in supp(ν) of weights ∞ is simply an annulus and χ(O) = 0.

The universal branched covering map now is a branched covering map p : X → S∗
where X is a simply connected surface and deg(p, x̃) = ν(p(x̃)) for all x̃ ∈ X. In the
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same manner, an orbifold covering map ρ : Ô → O will be an orbifold covering but in
the punctured surfaces ρ : M∗ → S∗.

2.6. Examples

2.6.1. Parabolic example. Here we will see an example of a parabolic orbifold
and its universal branched covering map. For this, we will define a group of isometries
of the complex plane, whose action in C is properly discontinuous but not free, and
consider the induced orbifold structure over the quotient space C/Γ.

Let Λ be the group of automorphisms of the complex plane C ≃ R2 of the form
z 7→ z+k, with k ∈ Z⊕ iZ. Let Γ be the one of automorphisms of the form z 7→ ±z+k,
with k ∈ Z ⊕ iZ. Then, Λ is a subgroup of Γ.

A fundamental domain for the action of Λ is the square [−1
2 ,

1
2 ]2. Also, note that the

map z 7→ −z preserves the lattice 1
2Z ⊕ 1

2 iZ, and sends the rectangle [−1
2 , 0] × [−1

2 ,
1
2 ]

onto the rectangle R := [0, 1
2 ] × [−1

2 ,
1
2 ]. Then, R is a fundamental domain for the action

of Γ. The segment {0} × [0, 1
2 ] is identified with the segment {0} × [−1

2 , 0], and the
segment {1

2} × [0, 1
2 ] is identified with the segment {1

2} × [−1
2 , 0]. Finally, the segment

[0, 1
2 ] × {−1

2} is identified with the segment [0, 1
2 ] × {1

2}.
The quotient space S2 = C/Γ is then a topological a 2-sphere, and we shall study

the orbifold structure O = (S2, ν) induced by the quotient map p : C → S2. The set of
critical points of this map is

crit(p) = 1
2Z ⊕ 1

2 iZ.
What is more, the stabilizer of a point z0 ∈ crit(p) is generated by the order-two auto-
morphism given by z 7→ −(z − 2z0). Thus, deg(p, z0) = 2 for all z0 ∈ crit(p), and the
singular points of O are all of weight 2. Also, the critical values of p are x1 := p(0),
x2 := p(1

2), x3 := p(1
2 i) and x4 := p(1

2 + 1
2 i). Then, supp(ν) = {x1, . . . , x4}, and we that

O is the orbifold (2, 2, 2, 2) over the sphere. See Figure 2.2.

Note that T 2 = C/Λ is topologically a torus. As Λ is a subgroup of Γ, there is an
induced natural map ρ : T 2 → S2, which is an orbifold covering map over O. This
map is a degree-two branched covering map with four critical points, namely, the classes
modulo Λ of the complex numbers 0, 1

2 , 1
2 i and 1

2 + 1
2 i.

One can compute the Euler characteristic to check that χ(O) = 0. Note that this is
consistent with the statement of Lemma 2.7 as χ(T 2) = 0.

2.6.2. Hyperbolic example. Consider the example of an orbifold O′ over the
sphere, with signature (2, 2, 2,∞). We may take advantage of the degree-two branched
covering map ρ : T 2 → S2 given above.

Recall the point x4 ∈ S2 already defined, and let x̂4 ∈ T 2 be the (only) point
in ρ−1(x4). Then, the surfaces T∗ := T 2\{x̂4} and S∗ := S2\{x4} are respectively a
punctured torus and a punctured sphere. Let p̂ : X → T∗ be the universal covering map
of T∗. Then, p′ := ρ ◦ p̂ is a branched covering map with the same critical values as the
map ρ : T∗ → S∗, namely, x1, x2 and x3. By placing the weight 2 to each of this points,
and the weight ∞ to x4, we obtain the orbifold O′, and p′ : X → S∗ is its universal
branched covering map. We will return to this example in section 4.3.2.
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p

2 2

2 2

Figure 2.2.

An interesting part of this example is that we now know the orbifold (2, 2, 2,∞)
over the sphere can be finitely-covered by a once punctured torus. Note that its Euler
characteristic is

χ(O′) = χ(S2) − 3
(
1 − 1

2

)
−
(
1 − 1

∞

)
= 2 − 3

2 − 1 = −1
2 ,

and this is consistent with the fact that χ(T∗) = −1 and deg(ρ) = 2.



CHAPTER 3

Quotients of torus endomorphisms

The work presented in this thesis emerged from studying orbifolds associated with
Thurston maps, as discussed in [1]. See the definition below. In that book, the authors
introduce the concept of a quotient of torus endomorphism (QOTE), which are specific
instances of Thurston maps, and pose the question of whether these maps have parabolic
orbifolds. After encountering this question, my advisor and I began to investigate it,
ultimately providing a positive answer. Therefore, the ideas and results presented in
this chapter are original and represent the mathematical core of this thesis. They can
also be found in [6].

We will start by recalling what a Thurston map f is and describing its associated
orbifold Of . Then, we will also recall the notion of QOTEs and prove that they are
indeed Thurston maps. See remarks after Proposition 3.2. After that, we will provide an
example of these kinds of maps and establish some general properties of them. In Section
3.2, we state the key theorem of this chapter, that is Theorem 3.3, and demonstrate how
it leads to the main contribution of this thesis:

Theorem 3.1. Let f be a QOTE. Then, Of is parabolic.

It was first demonstrated in [1] that proving Theorem 3.3 suffices to establish The-
orem 3.1; see [1, Lemma 3.13]. In this work, we provide a slightly different proof of this
implicance.

Theorem 3.3 is actually interesting in its own right, and it also implies that the
projection associated with a QOTE f is an orbifold covering map of Of (see Theorem
3.4), which is noteworthy as well.

We close this chapter with the proof of Theorem 3.3.

A Thurston map is a self-branched covering map f : S2 → S2 in a sphere with degree
deg(f) ≥ 2 and such that post(f) =

⋃
n≥1 f

n(crit(f)) is a finite set.
For a Thurston map f : S2 → S2 one can associate an orbifold Of = (S2, νf ) over

the sphere, with ramification function given by
νf (x) := lcm

{
deg(fn, y) : y ∈ f−n(x), n ≥ 1

}
.

Note that supp(νf ) = post(f).

3.1. QOTEs

A quotient of torus endomorphism (QOTE) is a branched covering map f : S2 → S2

such that there is a torus endomorphism F : T 2 → T 2 of degree deg(F ) ≥ 2 and a
branched covering map ρ : T 2 → S2 such that f ◦ ρ = ρ ◦ F .

21
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So the following diagram commutes:

T 2 T 2

S2 S2

F

ρ ρ

f

Here by endomorphism we mean a self-branched covering map. However, formula
(2.2) implies that a torus endomorphism cannot have critical points as χ(T 2) = 0. In
consequence, a torus endomorphism is simply a self-covering map of the torus. The fact
that deg(F, ·) = 1 gives the following for all ŷ ∈ T 2:

(3.1) deg(ρ, F (ŷ)) = deg(ρ, ŷ) deg(f, ρ(ŷ)).

We say F and ρ are associated maps for f if they satisfy the conditions given above.
We shall also say that F and ρ are respectively an associated endomorphism and an
associated projection for f .

For a given QOTE f , the associated maps F and ρ are not unique. For example, if
F ′ : T 2 → T 2 and G : T 2 → T 2 are torus endomorphisms such that F ◦ G = G ◦ F ′,
then F ′ and ρ′ := ρ◦G are associated maps for f . One could choose F ′ = G = F , which
would preserve the same torus endomorphism but with a different projection.

Proposition 3.2. Let f : S2 → S2 be a QOTE with associated projection ρ. Then,
post(f) = ρ(crit(ρ)). In particular, post(f) is a finite set.

Proof. We will first prove post(f) ⊂ ρ(crit(ρ)). Let x ∈ post(f). Then, there is
some n ≥ 1 and y ∈ f−n(x) such that deg(fn, y) ≥ 2. Let ŷ ∈ ρ−1(y) and x̂ := Fn(ŷ).
We have x̂ ∈ ρ−1(x) and

deg(ρ, x̂) = deg(ρ, ŷ) deg(fn, y) ≥ 2,

and so x ∈ ρ(crit(ρ)).
We now prove ρ(crit(ρ)) ⊂ post(f). Let x ∈ ρ(crit(ρ)). Then there is some x̂ ∈

ρ−1(x) such that deg(ρ, x̂) ≥ 2. Since crit(ρ) is a finite set and |F−n(x̂)| = deg(F )n ≥ 2n

for all n ≥ 1, there is some N ≥ 1 and ŷ ∈ F−N (x̂) such that ŷ ̸∈ crit(ρ). Call y := ρ(ŷ).
Then, fN (y) = x and

deg(fN , y) = deg(ρ, ŷ) deg(fN , y) = deg(ρ, x̂) ≥ 2.

This proves x ∈ post(f). □

This proposition, toghether with the fact that deg(f) = deg(F ) ≥ 2, shows every
QOTE f : S2 → S2 is a Thurston map.

3.1.1. Example of a QOTE. Consider the (parabolic) orbifold (2, 2, 2, 2) over
the sphere given in Section 2.6, with the associated degree-two branched covering map
ρ : T 2 → S2. Recall that here T 2 = C/Λ and S2 = C/Γ, where Λ is the group of
homeomorphisms of the form φ+

k (z) = z + k, with k ∈ Z ⊕ iZ, and to Γ are added the
homeomorphisms of the form φ−

k (z) = −z + k, with k ∈ Z ⊕ iZ.
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ρ ρ

f

ŷ1

ŷ2

F (ŷ1)

F (ŷ2)

F

y f(y)

0 1
2

1
2 i

0

1
2 i

1
2

Figure 3.1. At the top, two squares [0, 1)2 represent the torus T 2. The
illustration on the right square is obtained by applying the map 2z to the
one on the left square. This represents a degree-four covering map on T 2.
The vertical arrows represent a degree-two branched covering map onto
the sphere. The self-covering map on T 2 descends to Thurston map.

If A : C → C is the homeomorphism given by A(z) = 2z, then we have

(A ◦ φ±
k )(z) = 2(±z + k) = ±2z + 2k = (φ±

2k ◦A)(z)

for all z ∈ C and k ∈ Z ⊕ iZ. This shows that A ◦ Λ ⊂ Λ ◦ A and A ◦ Γ ⊂ Γ ◦ A. As
a consequence, A induces a self-map of the torus F : T 2 → T 2 and a self-map of the
sphere f : S2 → S2, satisfying f ◦ ρ = ρ ◦ F . See Figure 3.1.

The quotient map p̂ : C → T 2 associated to Λ is a covering map and, since F satisfies
F ◦ p̂ = p̂◦A, it follows F is also a covering map. Besides, deg(F ) = 4 and so deg(f) = 4
as well. This proves that f is an example of a QOTE.

Note that this analysis applies to any linear map A that is equivariant with respect
to Λ and Γ. Consequently, two QOTEs can share the same orbifold structure while
exhibiting different dynamics on the sphere.

We now study the orbifold associated to this Thurston map. The map f has six
critical points that, seen in the fundamental domain [0, 1

2) × [0, 1) of Γ’s action, are the
complex numbers 1

4 , 1
4 i,

1
4 + 1

4 i,
1
2 + 1

4 i,
1
4 + 1

2 i and 1
4 + 3

4 i. As stated in Proposition 3.2,
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1
4

1
4 + 1

2 i
1
4 i

1
2 + 1

4 i
1
4 + 1

4 i
1
4 + 3

4 i

1
2

1
2 i

1
2 + 1

2 i

0

2:1 2:1 2:1 2:1
2:1 2:1

Figure 3.2.

the postcritical set of f consists of the points 0, 1
2 , 1

2 i and 1
2 + 1

2 i in [0, 1
2) × [0, 1). The

points in crit(f) ∪ post(f) are mapped by f as shown in the diagram of Figure 3.2.
The orbifold Of given in this example is then the orbifold (2, 2, 2, 2) over the sphere,

and coincides with the orbifold we started with. This is no coincidence; we will show
in general that the projection ρ : T 2 → S2 associated to a QOTE f : S2 → S2 is an
orbifold covering map of Of . See Theorem 3.4 below.

3.2. QOTEs have parabolic orbifolds

As already noted in the introduction to this chapter, the key theorem here is the
following:

Theorem 3.3. Let f : S2 → S2 be a QOTE with associated projection ρ. Then, the
degree deg(ρ, ·) is constant on ρ−1(x) for all x ∈ S2.

Another way to say this is that there is a function α : S2 → N such that α(x) =
deg(ρ, x̂) for all x̂ ∈ ρ−1(x). Before proving Theorem 3.3, we see some of its consequences.

Theorem 3.4. Let f : S2 → S2 be a QOTE and ρ : T 2 → S2 an associated
projection for f . Then, ρ : T 2 → Of is an orbifold covering map. In other words,

νf (x) = deg(ρ, x̂)

for all x̂ ∈ ρ−1(x) and x ∈ S2.

Proof. By Theorem 3.3, there exists a function α : S2 → N such that deg(ρ, x̂) =
α(x) for all x̂ ∈ ρ−1(x). We want to show νf (x) = α(x) for all x ∈ S2. First note that
this function satisfies

α(y) deg(fn, y) = deg(ρ, ŷ) deg(fn, y) = deg(ρ, Fn(ŷ)) = α(ρ(Fn(ŷ)))
= α((ρ ◦ Fn)(ŷ)) = α((fn ◦ ρ)(ŷ)) = α(fn(y))

for all y ∈ S2, where ŷ ∈ ρ−1(y).
Let x ∈ S2. As pointed out before, α(y) deg(fn, y) = α(x) for all y ∈ f−n(x). This

gives deg(fn, y) | α(x) for all y ∈ f−n(x), and implies νf (x) | α(x) by definition of νf .
It remains to prove that α(x) | νf (x).

Choose any x̂ ∈ ρ−1(x). Since crit(ρ) is a finite set and |F−n(x̂)| = deg(F )n ≥ 2n

for all n ≥ 1, there is some N ≥ 1 and ŷ ∈ F−N (x̂) such that ŷ ̸∈ crit(ρ). Call y := ρ(ŷ).
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Then, fN (y) = x and

α(x) = deg(ρ, x̂) = deg(ρ, ŷ) deg(fN , y) = deg(fN , y) | νf (x)

as claimed. □

Given these results, the proof of Theorem 3.1 becomes straightforward:

Proof. (Theorem 3.1) Let ρ : T 2 → S2 be an associated projection for f . By
Theorem 3.4, we know that ρ : T 2 → Of is an orbifold covering map. By Lemma 2.7,
we conclude that χ(Of ) = deg(ρ)χ(T 2) = 0. □

The following result can also be easily deduced using Theorem 3.4. However, a proof
of this result was already provided in [1, Lemma 3.12].

Proposition 3.5. Let f be a QOTE. Then, f has no periodic critical points.

Proof. By Theorem 3.4, we know that νf (x) = deg(ρ, x̂) < ∞ for all x ∈ S2, where
x̂ ∈ ρ−1(x). On the other hand, if f had periodic critical points, there would exist some
x ∈ S2 such that νf (x) = ∞, a contradiction. Therefore f cannot have periodic critical
points. □

Finally, another interesting fact about the associated projection of a QOTE is the
one below:

Corollary 3.6. Let f be a QOTE and ρ an associated projection for f . Then,
ρ−1(ρ(crit(ρ))) = crit(ρ).

Proof. It is clear that ρ−1(ρ(crit(ρ))) ⊃ crit(ρ). On the other hand, suppose x̂ ∈
ρ−1(ρ(crit(ρ))). Then, x := ρ(x̂) ∈ ρ(crit(ρ)) and there is some x̂1 ∈ crit(ρ) such that
ρ(x̂1) = x. Since x̂, x̂1 ∈ ρ−1(x), Theorem 3.3 gives deg(ρ, x̂) = deg(ρ, x̂1) ≥ 2. It follows
x̂ ∈ crit(ρ). □

Let us look at an example of a finite branched covering map η : T 2 → Ĉ not satisfying
the condition of constant degree given in Theorem 3.3. Of course, the theorem itself tells
us that η will not be the associated projection of a QOTE.

Let ρ : T 2 → S2 be the branched covering map given in Figure 3.1. Consider any
homeomorphism h : S2 → Ĉ taking ρ(crit(ρ)) onto the set {0, 1, 2, 3}, and let g : Ĉ → Ĉ
be the map z 7→ z2. Then, the composition η := g◦h◦ρ : T 2 → Ĉ is a branched covering
map.

We claim that deg(η, ·) is not constant on η−1(1). To see this, let x+, x− ∈ S2 be
the points such that h(x+) = 1 and h(x−) = −1. Note that x+ ∈ ρ(crit(ρ)) and x− ̸∈
ρ(crit(ρ)). Then, there exist x̂+ ∈ ρ−1(x+) and x̂− ∈ ρ−1(x−) such that deg(ρ, x̂+) = 2
and deg(ρ, x̂−) = 1. Besides, η(x̂+) = η(x̂−) = 1 and

deg(η, x̂+) = deg(ρ, x̂+) deg(h, x+) deg(g, 1) = 2
> 1 = deg(ρ, x̂−) deg(h, x−) deg(g,−1) = deg(η, x̂−).
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3.2.1. Projection’s local degree. We now give a proof of Theorem 3.3. For this,
we need to introduce some definitions and lemmas.

Suppose f : S2 → S2 is a QOTE with associated endomorphism F : T 2 → T 2

and associated projection ρ : T 2 → S2. We say F is ρ-injective if it is injective when
restricted to each fiber ρ−1(y) with y ̸∈ f−1(post(f)). In this case, we will also say F
and ρ have the injectivity property.

Not every pair of associated maps for a QOTE f have the injectivity property.
Indeed, for a given pair F and ρ, consider F and ρ′ := ρ ◦ F as associated maps for f .
For any y ̸∈ f−1(post(f)) and ŷ ∈ ρ−1(y), there are two different points ỹ0, ỹ1 ∈ F−1(ŷ)
as deg(F ) ≥ 2. But then, ρ′(ỹ1) = (ρ ◦ F )(ỹ1) = ρ(ŷ) = y = ρ(ŷ) = (ρ ◦ F )(ỹ0) = ρ′(ỹ0).
This shows that ỹ0, ỹ1 ∈ (ρ′)−1(y) and F (ỹ1) = ŷ = F (ỹ0).

On the other hand, the associated maps given in Figure 3.1 do satisfy the injectivity
property. One way of seeing this is to note that Lemma 3.8 below implies that F must
be ρ-injective whenever deg(ρ) is a prime number. Indeed, the condition ρ = ρ′ ◦G gives
deg(ρ) = deg(ρ′) deg(G), and this cannot be as deg(G) ≥ 2.

Below we prove that every QOTE has a pair of associated maps with the injectivity
property. See Theorem 3.9.

Lemma 3.7. Suppose F is not ρ-injective. Then, the group

Λ(F, ρ) := {φ ∈ homeo(T 2) : F ◦ φ = F and ρ ◦ φ = ρ}

is non-trivial.

Proof. If F is not ρ-injective, then there is some y ̸∈ f−1(post(f)) and two different
points ŷ0, ŷ1 ∈ ρ−1(y) such that F (ŷ1) = F (ŷ0). Because the fundamental group of T 2 is
abelian, the covering F : T 2 → T 2 is regular. Then, there is some φ ∈ homeo(T 2) such
that F ◦ φ = F and F (ŷ0) = ŷ1. Note that φ ̸= id as ŷ1 ̸= ŷ0.

We claim that ρ ◦ φ = ρ. To see this, apply Lemma 2.4 for the branched cover
f . Then, it sufficies to show that f ◦ (ρ ◦ φ) = f ◦ ρ and that there is some x0 ∈ T 2

such that (ρ ◦ φ)(x0) = ρ(x0) =: z0 with f(z0) ̸∈ f(crit(f)). First of all, we have
f ◦ ρ ◦ φ = ρ ◦ F ◦ φ = ρ ◦ F = f ◦ ρ. Secondly, (ρ ◦ φ)(ŷ0) = ρ(ŷ1) = ρ(ŷ0) = y. Since
y ̸∈ f−1(post(f)), we know that f(y) ̸∈ post(f) ⊃ f(crit(f)).

T 2

S2

S2

ρ◦F

ρ

ρ◦φ

f

This shows that φ ∈ Λ(F, ρ) as desired. □

Lemma 3.8. Suppose F is not ρ-injective. Then there is a torus T ′, a pair of asso-
ciated maps F ′ : T ′ → T ′ and ρ′ : T ′ → S2 for f and a covering map G : T 2 → T ′ with
deg(G) ≥ 2 such that the following diagram commutes:
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T 2 T 2

T ′ T ′

S2 S2

F

G

ρ

G

ρ
F ′

ρ′ ρ′

f

Proof. We know the group Λ = Λ(F, ρ) defined in Lemma 3.7 is non-trivial. Since
all elements in Λ are deck transformations of the covering F , we get Λx̃ = {id} for all
x̃ ∈ T 2. It follows the quotient map G : T 2 → T 2/Λ is a covering map, and deg(G) ≥ 2.
Moreover, since it is covered by a torus, T ′ := T 2/Λ must be topologically a torus.

Observe that, whenever x̂0, x̂1 ∈ T 2 verify G(x̂1) = G(x̂0) = x, there is some φ ∈ Λ
such that φ(x̂0) = x̂1 and so F (x̂1) = (F ◦φ)(x̂0) = F (x̂0). In other words, F is constant
on each fiber G−1(x). Then, F factors to a covering map F ′ : T ′ → T ′, meaning that it
satisfies F ′ ◦G = G ◦ F . Note also that deg(F ′) = deg(F ) ≥ 2.

In the same way, one can check that ρ is constant on each fiber G−1(x). Then, there
is a branched covering map ρ′ : T ′ → S2 such that ρ = ρ′ ◦G. Since G is surjective and
f ◦ ρ′ ◦G = f ◦ ρ = ρ ◦ F = ρ′ ◦G ◦ F = ρ′ ◦ F ′ ◦G, it follows f ◦ ρ′ = ρ′ ◦ F ′. □

Theorem 3.9. Let f : S2 → S2 be a QOTE. Then there exist associated maps for
f satisfying the injectivity property.

Proof. Let F : T 2 → T 2 and ρ : T 2 → S2 be associated maps for f . If they do not
satisfy the injectivity property, we can apply Lemma 3.8 to obtain the maps F ′ and ρ′.
Note that the conditions ρ = ρ′ ◦ G and deg(G) ≥ 2 give deg(ρ′) < deg(ρ). If it is the
case that F ′ is not ρ′-injective, repeat the process and, in finitely many steps, obtain the
maps with the desired property. □

Again, suppose f : S2 → S2 is a QOTE with associated maps F and ρ. Given x ∈ S2

and y ∈ f−1(x), note that the inclusion F (ρ−1(y)) ⊂ ρ−1(x) always holds. We say F is
ρ-surjective if F (ρ−1(y)) = ρ−1(x) for all x ∈ S2 and y ∈ f−1(x).

Lemma 3.10. F is ρ-injective if and only if F is ρ-surjective.

Proof. Assume F is ρ-injective. Let x ∈ S2 and y ∈ f−1(x). First suppose x ∈
S2\post(f). Since f(post(f)) ⊂ post(f), we also have y ∈ S2\post(f). Using the fact
that post(f) = ρ(crit(ρ)), we conclude both y and x are regular values of ρ. It follows
|ρ−1(x)| = deg(ρ) = |ρ−1(y)|. By hypotesis, F : ρ−1(y) → ρ−1(x) is injective, which
implies it is also surjective. This proves the result for the case x ∈ S2\post(f).

Let now x ∈ post(f). We will prove that for all x̂ ∈ ρ−1(x) there exists ŷ ∈ ρ−1(y)
such that F (ŷ) = x̂. Take a sequence un ∈ S2\post(f) with un → x. Then there is
a sequence vn ∈ f−1(un) such that vn → y, and a sequence ûn ∈ ρ−1(un) such that
ûn → x̂. Since un ∈ S2\post(f), we know F (ρ−1(vn)) = ρ−1(un). Then, there exists
v̂n ∈ ρ−1(vn) such that F (v̂n) = ûn. Let ŷ be a limit point of v̂n. Continuity of ρ and
F gives ρ(ŷ) = y and F (ŷ) = x̂. This proves F is ρ-surjective.
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For the converse, assume F is ρ-surjective. Let y ∈ S2\f−1(post(f)) and call x :=
f(y) ∈ S2\post(f). As seen in the first paragraph, we have |ρ−1(x)| = deg(ρ) = |ρ−1(y)|.
By hypotesis, F : ρ−1(y) → ρ−1(x) is surjective, which implies it is also injective. □

Lemma 3.11. If F is ρ-surjective, then the degree deg(ρ, ·) is constant on ρ−1(x) for
all x ∈ S2.

Proof. Let x ∈ S2 and x̂0, x̂1 ∈ ρ−1(x). Since ρ−1(post(f)) is a finite set and
|F−n(x̂1)| = deg(F )n ≥ 2n for all n ≥ 1, there is some N ≥ 1 and ŷ1 ∈ F−N (x̂1) such
that ŷ1 ̸∈ ρ−1(post(f)). We then have FN (ŷ1) = x̂1 and y := ρ(ŷ1) ̸∈ post(f).

Observe that fN (y) = (fN ◦ ρ)(ŷ1) = (ρ ◦ FN )(ŷ1) = ρ(x̂1) = x. Applying the
ρ-surjectivity property of F iteratively N times, we arrive at:

FN (ρ−1(y)) = FN−1(F (ρ−1(y))) = FN−1(ρ−1(f(y))) = · · · = ρ−1(fN (y)).
Then, there is some ŷ0 ∈ ρ−1(y) such that FN (ŷ0) = x̂0. Note that y ̸∈ post(f) =
ρ(crit(ρ)) gives deg(ρ, ŷ1) = deg(ρ, ŷ0) = 1. Using formula (3.1) for FN , we obtain

deg(ρ, x̂1) = deg(ρ, FN (ŷ1)) = deg(ρ, ŷ1) deg(f, y)
= deg(ρ, ŷ0) deg(f, y) = deg(ρ, FN (ŷ0)) = deg(ρ, x̂0)

as desired. □

We are now ready to prove Theorem 3.3.

Proof. (Theorem 3.3) Let f : S2 → S2 be a QOTE with associated endomorphism
F : T 2 → T 2 and associated projection ρ : T 2 → S2. If F is ρ-injective, then the
statement follows from Lemma 3.10 and Lemma 3.11. Suppose on the contrary that F is
not ρ-injective. Recall that by Lemma 3.8 there exists an associated torus endomorphism
F ′ and an associated projection ρ′ for f such that F ′ is ρ′-injective. Moreover, there is
a covering map G such that ρ = ρ′ ◦G.

Let x ∈ S2 and x̂0, x̂1 ∈ ρ−1(x). Then, ρ′(G(x̂1)) = ρ′(G(x̂0)) = x, and it follows
deg(ρ′, G(x̂1)) = deg(ρ′, G(x̂0)) by ρ′-injectivity. Since deg(G, ·) = 1, we see that

deg(ρ, x̂1) = deg(ρ′, G(x̂1)) = deg(ρ′, G(x̂0)) = deg(ρ, x̂0)
as claimed. □



CHAPTER 4

Lifting Thurston maps

We continue with the study of orbifolds associated with general Thurston maps. As
established in Proposition 4.2, such an orbifold is either parabolic or hyperbolic.

In Chapter 3, we proved that every quotient of torus endomorphism (QOTE) has
a parabolic orbifold (see Theorem 3.1). Conversely, Theorem 4.3 provides a reciprocal
statement for Thurston maps without periodic critical points. This result was already
demonstrated in [4] using algebraic topology tools, such as the lifting criterion given in
Proposition 2.1. Here, we present an alternative proof, inspired by the approach used in
[1, Theorem 3.1].

Thurston maps with parabolic orbifolds and periodic critical points are also explored
in [4]. In this context, the authors show that the map can be lifted to an annulus covering
map, similar to the treatment of QOTEs.

On the other hand, the scenario for Thurston maps f with hyperbolic orbifolds is
different. Following the definition of a QOTE, we aim to provide f with analogous
objects, such as the associated endomorphism and the associated projection.

The approach we present is the following. Just as Thurston maps with parabolic
orbifolds can be lifted to covering maps of the torus or the annulus, we aim to show
that Thurston maps with hyperbolic orbifolds can be lifted to covering maps of higher
genus surfaces. Unlike the case of the torus or the annulus, we cannot expect to have a
self-covering map of a higher genus surface. See formula (2.2).

What we will demonstrate is that for Thurston maps f : S2 → S2 with hyperbolic
orbifolds and no periodic critical points, there exist compact surfaces M0 and M1, a
covering map F1 : M0 → M1, and finite branched covering maps ρ0 : M0 → S2 and
ρ1 : M1 → S2 such that f ◦ ρ1 = ρ0 ◦ F1.

The trade-off when seeking a covering map is that we require two associated pro-
jections rather than just one. Consequently, we do not have an associated projection
for the iterates of f , unlike in the case of a QOTE, where fn ◦ ρ = ρ ◦ Fn holds. We
will then provide a family of covering maps Fn+1 : Mn+1 → Mn and finite branched
covering maps ρn : Mn → S2 such that f ◦ ρn+1 = ρn ◦ Fn+1. See Theorem 4.5. This
results in the commutative diagram shown in Figure 4.1.

In the case where f : S2 → S2 has periodic critical points, f will admit a similar
diagram with the difference that the associated projections will be onto the punctured
sphere S2

∗ = S2\{x ∈ S2 : νf (x) = ∞}.

To generalise the notion of a QOTE, we propose the following definition. We say a
branched covering map f : S2 → S2 is a quotient of towers of coverings (QOTC) if there

29
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· · · Mn+1 Mn · · · M1 M0

· · · S2 S2 · · · S2 S2

Fn+1

ρn+1 ρn

Fn F2

ρ1

F1

ρ0

f f f f

Figure 4.1.

is a family of surfaces Mn, a family of covering maps Fn+1 : Mn+1 → Mn, and a family
of finite branched covering maps ρn : Mn → S2 such that f ◦ ρn+1 = ρn ◦ Fn+1.

We can establish that post(f) ⊂ ρ0(crit(ρ0)) similarly to how it was demonstrated
for QOTEs in Proposition 3.2. Therefore, post(f) is a finite set for every QOTC f .

A statement analogous to Theorem 3.3 is more challenging to address in this context.
At the very least, some of the arguments presented in Chapter 3 cannot be applied here.
Note that the degree of the projections is not asked to be constant in n, meaning the
concepts of ρ-injectivity and ρ-surjectivity would not be equivalent here. Even if we
assume this property and others, it remains unclear whether the methods and results
from Chapter 3 can be adapted to this setting. We discuss this in Chapter 5.

4.1. The orbifold associated to a Thurston map

As already introduced, the orbifold associated to a Thurston map f : S2 → S2 is the
orbifold Of = (S2, νf ), where

νf (x) := lcm
{
deg(fn, y) : y ∈ f−n(x), n ≥ 1

}
.

In general, f : S2 → S2 will not be an orbifold covering map putting the orbifold
structure Of on S2. Actually, we will see the condition νf (y) deg(f, y) = νf (f(y)) for all
y ∈ S2 holds iff Of is parabolic. For every Thurston map, we have the following:

Proposition 4.1. Let f : S2 → S2 be a Thurston map. Then, νf (y) deg(f, y)
divides νf (f(y)) for all y ∈ S2.

Proof. Let y ∈ S2 and x := f(y). For all z ∈ f−n(y) we have fn+1(z) = x. Then,
deg(f, y) deg(fn, z) = deg(fn+1, z) | νf (x) by definition of νf (x). Also by definition of
νf (x) it holds that deg(f, y) | νf (x). As a consequence, we get

deg(fn, z) | νf (x)
deg(f, y)

for all z ∈ f−n(y). Since νf (y) := lcm {deg(fn, z) : z ∈ f−n(y), n ≥ 1}, we conclude
that

νf (y) | νf (x)
deg(f, y)

and the statement follows. □

The proposition below can be found as [1, Proposition 2.12]. The proof provided
here follows essentially the same reasoning as the one in the cited reference.

Proposition 4.2. Let f : S2 → S2 be a Thurston map. Then χ(Of ) ≤ 0, and
χ(Of ) = 0 if and only if f : Of → Of is an orbifold covering map.



4.2. THURSTON MAPS WITH PARABOLIC ORBIFOLDS 31

Proof. We start by defining an orbifold O1
f = (S2, ν1

f ) as follows. The ramification
function of is given by

ν1
f (y) = νf (f(y))

deg(f, y)
for all y ∈ S2. Here ν1

f (y) = ∞ if νf (f(y)) = ∞. Note that supp(ν1
f ) ⊂ f−1(supp(νf ))

is a finite set, and so ν1
f is indeed a ramification function on S2.

By Proposition 4.1, for all y ∈ S2 there exists some k = k(y) ≥ 1 such that νf (f(y)) =
kνf (y) deg(f, y). Then, ν1

f (y) = kνf (y) ≥ νf (y) for all y ∈ S2, and by definition (2.3)
we know that χ(O1

f ) ≤ χ(Of ).
On the other hand, observe that f : O1

f → Of is an orbifold covering map by
definition of ν1

f . Applying Lemma 2.7, we see that χ(O1
f ) = deg(f)χ(Of ). Hence,(

deg(f) − 1
)
χ(Of ) = χ(O1

f ) − χ(Of ) ≤ 0.

From the condition deg(f) ≥ 2 it follows that χ(Of ) ≤ 0.

If χ(Of ) = 0, then χ(O1
f ) = 0. If there were a point y ∈ S2 such that ν1

f (y) ̸= νf (y),
then it would hold that ν1

f (y) > νf (y) and that χ(O1
f ) < χ(Of ), a contradiction. Hence,

χ(Of ) = 0 implies ν1
f = νf , which is the condition for f : Of → Of to be an orbifold

covering map. □

4.2. Thurston maps with parabolic orbifolds

Suppose f : S2 → S2 is a Thurston map with parabolic orbifold. It can be seen that
Of has one of the following signatures:

(∞,∞), (2, 2,∞), (2, 2, 2, 2), (2, 4, 4), (3, 3, 3) or (2, 3, 6).
Note that the first two occur if and only if f has periodic critical points.

In this section we will see that Thurston maps having one of the last four signatures
are QOTEs. See Theorem 4.3 below.

For what follows, we refer to [1, Section 3.1]. Recall that in Section 2.6 we described
a group Γ of isometries of the complex plane, whose action on C lead to the orbifold
(2, 2, 2, 2) over the sphere C/Γ. We will do the same description for the remaining
parabolic orbifolds over the sphere. In each case, the groups we give are:

(2222) z 7→ φ(z) = ±z +m+ ni, with m,n ∈ Z;
(244) z 7→ φ(z) = ikz +m+ ni, with m,n ∈ Z, k = 0, 1, 2, 3;
(333) z 7→ φ(z) = ω2kz +m+ nω, with m,n ∈ Z, k = 0, 1, 2;
(236) z 7→ φ(z) = ωkz +m+ nω, with m,n ∈ Z, k = 0, 1, 2, 3, 4, 5.

Here ω = eiπ/3.
If Γ is any of these groups, then the quotient space C/Γ is topologically a sphere.

Moreover, the quotient map is a universal branched covering map of the orbifold over
C/Γ with the signature indicated in brackets. We will use this fact to prove the following:

Theorem 4.3. Let f : S2 → S2 be a Thurston map without periodic critical points.
If f has a parabolic orbifold, then f is a QOTE.
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Proof. We know Of has one of the signatures (2, 2, 2, 2), (2, 4, 4), (3, 3, 3) or (2, 3, 6).
Consider the appropriate group Γ of isometries (2222), (244), (333) or (236) described
above. In the first two cases, let Λ be the subgroup of Γ consisting of maps of the form
z 7→ z + m + ni, with m,n ∈ Z. In the last two cases, consider the maps of the form
z 7→ z+m+nω, with m,n ∈ Z. Call π : C → C/Γ and π̂ : C → C/Λ the quotient maps.

Up to conjugating f by a homeomorphism C/Γ → S2, we may assume we have
f : C/Γ → C/Γ. As stated in Proposition 4.2, f is an orbifold covering map, and so
f ◦ π : C → C/Γ is a universal branched covering map for Of . Hence, Corollary 2.13
gives a homeomorphism h : C → C such that f ◦ π = π ◦ h.

The fact that h satisfies f ◦ π = π ◦ h implies that h ◦ Γ ◦ h−1 ⊂ Γ. In particular, if
ψ ∈ Λ, then h ◦ψ ◦h−1 ∈ Γ. Since ψ has no fixed points, nor does h ◦ψ ◦h−1. We claim
that this implies h ◦ ψ ◦ h−1 ∈ Λ. To prove this, it suffices to show that any element in
Γ\Λ has a fixed point. This is true since a map of the form z 7→ az + b with a ̸= 1 fixes
the point b

1−a .

C C

C/Λ C/Λ

C/Γ C/Γ

h

π̂ π̂

F

ρ ρ

f

We conclude that h ◦ Λ ◦ h−1 ⊂ Λ, and so h induces a map F : C/Λ → C/Λ such
that F ◦ π̂ = π̂ ◦ h. Since π̂ is a covering map and h an homeomorphism, it follows
F is a covering map. Consider the natural map ρ : C/Λ → C/Γ, that is, the one
satisfying π = ρ ◦ π̂. The fact that π̂ : C → C/Λ is onto, together with the fact that
f ◦ ρ ◦ π̂ = f ◦ π = π ◦ h = ρ ◦ π̂ ◦ h = ρ ◦ F ◦ π̂ gives f ◦ ρ = F ◦ ρ. □

4.3. Thurston maps with hyperbolic orbifolds

Suppose f : S2 → S2 is a Thurston map and call O0
f := Of . For n ≥ 0, we define an

orbifold On+1
f = (S2, νn+1

f ) inductively as

νn+1
f (y) =

νn
f (f(y))

deg(f, y) ,

for all y ∈ S2. We automatically have that f : On+1
f → On

f is an orbifold covering map
for all n ≥ 0. Also, On

f = O1
fn for all n ≥ 1. We will omit the subscript in On

f when
there is no confusion.

· · · f−−→ On+1 f−−→ On f−−→ · · · f−−→ O1 f−−→ O0.

From Proposition 4.2 it follows that f has a parabolic orbifold if and only if On =
O0 for all n ≥ 0. On the other hand, when Of is hyperbolic, we have χ(On+1) =
deg(f)χ(On) = deg(f)nχ(O0), which implies all orbifolds in the sequence are different.
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Let us illustrates this with an example. Consider the polynomial given by the ex-
pression f(z) = z2 + i, extended as a map f : Ĉ → Ĉ in the Riemann sphere. We will
examine the associated sequence of orbifolds On = (Ĉ, νn), which will be used later in
section 4.3.2.

The only two critical points of f are 0 and ∞, and the ramification portrait is

0 i
2

−1 + i
2

−i
2

∞
∞

2:1 2:1

Call x1 = i, x2 = −1 + i and x3 = −i. Hence, supp(ν0) = {x1, x2, x3,∞} and the
signature of O0 is (2, 2, 2,∞). Since ∞ is a fixed critical point, we shall think we are
working on the once punctured sphere C = Ĉ\{∞}, and consider then supp∗(νn) =
supp(νn)\{∞}.

Let x4 = 1 − i. To obtain O1, observe that f−1(supp∗(ν0)) = supp∗(ν0) ∪ {0, x4}.
Since deg(f, 0) = 2 and deg(f, x4) = 1, it follows that supp(ν1) = supp(ν0) ∪ {x4} and
ν1(x4) = 2. This means O1 has signature (2, 2, 2, 2,∞). Again, we may summarize this
information with one diagram:

0 i
2

−1 + i
2

−i
2

∞
∞

1 − i
2

2:1 2:1

Now, since x4 is a regular value of f , there are two different points x5 and x6 with
f(x5) = f(x6) = x4. We have supp∗(ν2) = supp∗(ν1)∪{x5, x6}, and ν2(x5) = ν2(x6) = 2
as well. Moreover, x5 and x6 are both regular values of f . Again, there are four different
points x7, x8, x9 and x10 such that f(x7) = f(x8) = x5 and f(x9) = f(x10) = x6. We
have supp∗(ν3) = supp∗(ν2) ∪ {x7, x8, x9, x10}, with ν3(x7) = · · · = ν3(x10) = 2 as well.

Inductively, for n ≥ 0 there are 2n = 2 · 2n−1 new points in supp∗(νn+1), in addition
to those already in supp∗(νn). As a consequence,

|supp∗(νn+1)| = 3 +
n∑

i=0
2i = 3 + 2n+1 − 1

2 − 1 = 2 + 2n+1

for all n ≥ 0.

4.3.1. Lifting Thurston maps to covering maps. Recall the definition of QOTC
provided at the beginning of this chapter. In this section, we prove that Thurston maps
with hyperbolic orbifolds are also QOTCs. Furthermore, the maps ρn involved can be
chosen with additional properties. See Theorem 4.5 for details.

The key lemma is the following:

Lemma 4.4. Let f : S2 → S2 be a Thurston map and n ≥ 0. Given a surface
Mn and a finite orbifold covering map ρn : Mn → On

f , there exists a surface Mn+1

and orbifold covering maps Fn+1 : Mn+1 → Mn and ρn+1 : Mn+1 → On+1
f such that

f ◦ ρn+1 = ρn ◦ Fn+1 and 2 ≤ deg(ρn+1) ≤ deg(ρn).
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Proof. We will do a proof based on that of Theorem 4.3. Without loss of generality,
we may assume n = 0 to simplify notation.

Let p̂0 : X → M0 be a universal covering map for M0. Then, p0 := ρ0 ◦ p̂0 is a
universal branched covering map for O0. Let Γ0 be the group of deck transformations
of p0, and Λ0 be the one of p̂0. Let p1 : X ′ → S2 be any universal branched covering
map for O1, and call Γ1 its group of deck transformations. Since f : O1 → O0 is an
orbifold covering map, we have that f ◦ p1 is a universal branched covering map for O0.
Corollary 2.13 gives a homeomorphism h : X ′ → X such that f ◦ p1 = p0 ◦ h.

The fact that h satisfies f ◦ p1 = p0 ◦ h implies that h ◦ Γ1 ◦ h−1 ⊂ Γ0. Consider the
group morphism Φ : Γ1 → Γ0 given by Φ(φ) = h ◦ φ ◦ h−1. Hence, Λ1 := Φ−1(Λ0) is a
subgroup of Γ1 and satisfies h ◦ Λ1 ◦ h−1 ⊂ Λ0 by definition. As any ψ1 ∈ Λ1 is of the
form ψ1 = h−1 ◦ ψ0 ◦ h for some ψ0 ∈ Λ0, and elements in Λ0 have no fixed points, it
follows that elements in Λ1 have no fixed points. Then, M1 := X ′/Λ1 is a surface and
the quotient map p̂1 : X ′ → M1 is a covering map.

Since h ◦ Λ1 ◦ h−1 ⊂ Λ0, we have that h induces a map F1 : M1 → M0 such that
F1 ◦ p̂1 = p̂0 ◦ h. As p̂0 and p̂1 are covering maps, and h is an homeomorphism, it
follows F1 is a covering map. Consider the natural map ρ1 : M1 → S2, that is, the one
satisfying p1 = ρ1 ◦ p̂1. The fact that p̂1 : X ′ → M1 is onto, together with the fact that
f ◦ ρ1 ◦ p̂1 = f ◦ p1 = p0 ◦ h = ρ0 ◦ p̂0 ◦ h = ρ0 ◦ F1 ◦ p̂1, gives f ◦ ρ1 = ρ0 ◦ F1.

X ′ X

M1 M0

S2 S2

h

p̂1 p̂0

F1

ρ1 ρ0

f

We shall now prove that deg(ρ1) ≤ deg(ρ0). In other words, we shall prove that
[Γ1 : Λ1] ≤ [Γ0 : Λ0]. As Φ : Γ1 → Γ0 is an injective morphism, we have [Γ1 : Λ1] =
[Φ(Γ1) : Φ(Λ1)] = [Φ(Γ1) : Φ(Γ1) ∩ Λ0]. By combining this equality with Lemma 2.19
for H = Φ(Γ1), we arrive to [Γ1 : Λ1] ≤ [Γ0 : Λ0].

To finish, note that Γ1 has elements fixing points. This implies Λ1 ⊊ Γ1 and
deg(ρ1) = [Γ1 : Λ1] ≥ 2. □

Theorem 4.5. Let f : S2 → S2 be a Thurston map. Then, f is a QOTC and the
associated projections ρn : Mn → On

f can be chosen in such a way that ρn : Mn → On
f

is an orbifold covering map and 2 ≤ deg(ρn+1) ≤ deg(ρn), for all n ≥ 0.

Proof. Theorem 2.11 gives the existence of an initial orbifold covering map ρ0 :
M0 → O0 and, applying Lemma 4.4, one obtains the desired maps inductively. □

Corollary 4.6. In the context of Theorem 4.5, there exists some N ≥ 0 and r ≥ 2
such that deg(ρn) = r for all n ≥ N .
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Proof. The condition 2 ≤ deg(ρn+1) ≤ deg(ρn) given in Theorem 4.5 tells us
that the integers sequence {deg(ρn)}n≥0 is decreasing and bounded. The statement
follows. □

4.3.2. The example z2 + i. Recall the example of the polynomial f(z) = z2 + i
seen at the beginning of this section. We studied the associated orbifolds On, and showed
the support supp∗(νn) has exactly 2 + 2n+1 points of weight 2, for all n ≥ 0. We will
refer these points as x1, . . . , x2+2n .

For each n ≥ 0, we will give a geometric description of a finite orbifold covering map
ρn : Mn → On, where Mn is a surface. We will then show we can obtain a diagram like
the one shown in Figure 4.1, for this specific projections.

For n ≥ 1, consider a genus gn := 2n−1 surface in R3 with an axis of symmetry
as shown in Figure 4.2. More specifically, there is a line intersecting the surface in
2gn + 2 = 2n + 2 points, and a rotation of angle π respect to this line that induces an
order-two homeomorphism φn in the genus gn surface. We will denote by x̂n

1 , . . . , x̂
n
2n+2

the fixed points of φn.
Choose a point ŷn

∞ that is not fixed by φn, and call yn
∞ = φn(ŷn

∞). The surface
Mn that we will consider is the one obtained by removing the points ŷn

∞ and yn
∞ from

the genus gn surface. Now, the restriction φn : Mn → Mn induces a quotient space
Mn/⟨φn⟩ with the equivalence relation given by x̂ ∼ φn(x̂) for all x̂ ∈ Mn. This space
is topologically a punctured sphere, and the quotient map is a branched covering map.
Moreover, the critical points of this map are the fixed points of φn, and the local degree
is two for all of them.

We choose any homeomorphism Mn/⟨φn⟩ → Ĉ sending the class of each x̂n
i to the

point xi in supp∗(νn) defined above. The composition of this homeomorphism with the
quotient map will be denoted by ρn : Mn → Ĉ, and is the desired orbifold covering map.

On the other hand, to obtain M0 we consider a genus g0 = 1 surface and a home-
omorphism φ0 defined in the same way as before. However, this time we puncture the
genus g0 surface in one of the fixed points x̂0

1, . . . , x̂
0
4 of φ0 to obtain M0. Say we punc-

ture in x̂0
4. Again, the quotient space M0/⟨φ0⟩ is topologically a punctured sphere and

we get an orbifold covering map ρ0 : M0 → Ĉ in the same manner.

As already commented, we want to see that there is a family of covering maps
Fn+1 : Mn+1 → Mn such that ρn ◦ Fn+1 = f ◦ ρn+1 for all n ≥ 0. In other words, we
want to see each map f ◦ ρn+1 has a lift with respect to ρn.

For this, we will puncture the surfaces involved in order to obtain truly covering
maps. This will let us use the lifting criterion given in Proposition 2.1, and lift those
maps to the punctured surfaces. Then, Proposition 2.5 will give an extension of these
lifts to the original ones.

For n ≥ 0, consider

Ĉn
⋆ := Ĉ\f−n(supp(ν0)) and Mn

⋆ := Mn\ρ−1
n (f−n(supp(ν0))).

Hence, the restrictions f : Ĉn+1
⋆ → Ĉn

⋆ and ρn : Mn
⋆ → Ĉn

⋆ are covering maps. Note that
f−n(supp(ν0)) = supp(νn) ∪ {0} for all n ≥ 1.
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x̂n
1 x̂n

2+2nx̂n
2

x1 x2+2nx2

ζn
1

ηn
1 ηn

2
ζn

2

yn
∞

yn
0

ŷn
∞

ŷn
0

yn
∞

ŷn
0

Figure 4.2.

In what follows, we will treat punctures as points in the surface indistinctly and, in
particular, refer to them by the name of the points in the non-punctured surface. For
a puncture x in a punctured surface X⋆, let D(x) ⊂ X be a small disk around x, and
σ(x) : [0, 1] → ∂D(x) be a simple closed curve parametrizing the boundary of the disk.

By definition of a branched covering map, we may assume f ◦ σ(x) = σ(f(x))d for
punctures x in Ĉn+1

⋆ , where d = deg(f, x). In the same manner, we may assume that
ρn ◦ σ(x) = σ(ρn(x))d for punctures x in Mn

⋆ , where d = deg(ρn, x).
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Lemma 4.7. Let n ≥ 0, b ∈ Ĉn
⋆ and b̂ ∈ (ρn)−1(b). Suppose γ1 ∗ γ2 is a loop based

at b such that γr = δr ∗ σ(xn
ir

) ∗ δ−1
r for some ir and some path δr : [0, 1] → Mn

⋆ with
δr(1) = σ(xir )(0). Then, the homotopy class of γ1 ∗ γ2 belongs to (ρn)∗π1(Mn

⋆ , b̂).

Proof. We must show that the ρn-lift of γ1 ∗ γ2 starting at b̂ ends at b̂. Recall that
deg(ρn) = 2, and therefore b has exactly two lifts, say b̂ and b. We will strongly use this
last fact to prove the statement.

Let δ̂1 be the ρn-lift of δ1 starting at b̂, and δ1 be the one starting at b. Since
(ρn)−1(xi1) = {x̂i1} and deg(ρn, x̂i1) = 2, any ρn-lift of σ(xi1) starts and ends at different
points. Say σ̂1 is the ρn-lift starting at δ̂1(1). Hence, δ̂1 ∗ σ̂1 ∗ δ−1

1 is the ρn-lift of γ1
starting at b̂. In the same way, let δ̂2 and δ2 be respectively the ρn-lifts of δ2 starting at
b̂ and b, and let σ2 be the ρn-lift of σ(xi2) starting at δ2(1). Then, δ2 ∗ σ2 ∗ δ̂−1

2 is the
ρn-lift of γ2 starting at b.

To finish, we have that δ̂1 ∗ σ̂1 ∗ δ−1
1 ∗ δ2 ∗ σ2 ∗ δ̂−1

2 is the ρn-lift of γ1 ∗ γ2 starting at
b̂, and the statement follows as δ̂−1

2 (1) = δ̂2(0) = b̂. □

We now fix some base points b0 ∈ Ĉ0
⋆, bn+1 ∈ f−1(bn) and b̂n ∈ ρ−1

n (bn) for n ≥ 0.
Using the lifting criterion, we see that it suffices to show that
(4.1) (f ◦ ρn+1)∗π1(Mn+1

⋆ , b̂n+1) ⊂ (ρn)∗π1(Mn
⋆ , b̂

n),
in order to prove there is a map Fn+1 : Mn+1

⋆ → Mn
⋆ with f ◦ ρn+1 = ρn ◦Fn+1. We will

start by giving some generators of the fundamental groups involved.

For a puncture x in a punctured surface X⋆ with basepoint b ∈ X⋆, we will choose a
curve γ(x) : [0, 1] → X⋆ of the form γ(x) = δ(x)∗σ(x)∗δ(x)−1, where δ(x) : [0, 1] → X⋆ is
a path such that δ(x)(0) = b and δ(x)(1) = σ(x)(0). This gives an element of π1(X⋆, b).

If n ≥ 1, then the surface Mn
⋆ has the punctures x̂n

1 , . . . , x̂
n
2n+2, that are the critical

points of ρn, as well as the punctures ŷn
∞ and yn

∞, that are the lifts of the point ∞, and
the punctures ŷn

0 and yn
0 , that are the lifts of the point 0. On the other hand, M0

⋆ has
only one lift ŷ0

∞ = x̂0
4 of ∞, and the other punctures are x̂0

1, x̂
0
2 and x̂0

3.
For the surfaces Mn

⋆ , also consider the curves ζn
1 , η

n
1 , . . . , ζ

n
gn
, ηn

gn
shown in Figure 4.2.

As we need elements in π1(Mn
⋆ , b̂

n), we will again conjugate by a path δn
ℓ : [0, 1] → Mn

⋆

starting at b̂n and ending at the point that ζn
ℓ and ηn

ℓ share. That is, we consider the
loops αn

ℓ = δn
ℓ ∗ ζn

ℓ ∗ (δn
ℓ )−1 and βn

ℓ = δn
ℓ ∗ ηn

ℓ ∗ (δn
ℓ )−1.

Hence, for n ≥ 1, the group π1(Mn
⋆ , b̂

n) is the free group generated by the following
curves:

π1(Mn
⋆ , b̂

n) =
〈
αn

1 , β
n
1 , . . . , α

n
gn
, βn

gn
, γ(x̂n

1 ), . . . , γ(x̂n
2n+2), γ(ŷn

0 ), γ(ŷn
∞), γ(yn

0 )
〉
.

Of course, above we are considering homotopy classes of loops, and not actual loops.
Notice also that γ(yn

∞) is not in the list of generators. The case n = 0 is simpler. We
have:

π1(M0
⋆ , b̂0) =

〈
α0

1, β
0
1 , γ(x̂0

1), γ(x̂0
2), γ(x̂0

3)
〉
.

To prove the inclusion given in (4.1), it suffices to show the image by (f ◦ ρn+1)∗ of
each generator belongs to (ρn)∗π1(Mn

⋆ , b̂
n).
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Lemma 4.8. Let n ≥ 0 and let x be a puncture in Mn+1
⋆ . Then, the homotopy class

of (f ◦ ρn+1) ◦ γ(x) belongs to (ρn)∗π1(Mn
⋆ , b̂

n).

Proof. Call g = f ◦ ρn+1 and let x′ := g(x). Since deg(g, x) = 2 for all punctures x
in Mn+1

⋆ , we have g ◦ σ(x) = σ(x′)2. Note that deg(ρn, x̂
′) ∈ {1, 2} for all x̂′ ∈ ρ−1

n (x′).
Hence, any ρn-lift of σ(x′)2 is a loop. Namely, it can be either σ(x̂′) or σ(x̂′)2, for
x̂′ ∈ ρ−1

n (x′). This implies any ρn-lift of g ◦ γ(x) is also a loop as we have g ◦ γ(x) =
g ◦ δ(x) ∗ σ(x′)2 ∗ g ◦ δ(x)−1. □

On the other hand, as can be seen in Figure 4.2, we have the following:

Claim 4.9. Let n ≥ 0. Hence, both ρn+1 ◦ ζn+1
ℓ and ρn+1 ◦ ηn+1

ℓ bound a disk in Ĉ
containing an even number of punctures of type xi.

Lemma 4.10. Let n ≥ 0. Then, both homotopy classes of (f ◦ ρn+1) ◦ αn+1
ℓ and

(f ◦ ρn+1) ◦ βn+1
ℓ belong to (ρn)∗π1(Mn

⋆ , b̂
n).

Proof. We will give a proof only for αn+1
ℓ as the same argument holds for βn+1

ℓ .
Following Claim 4.9, let xi1 , . . . , xi2k

be the punctures contained in the disk bounded
by ζn+1

ℓ . Hence, up to changing the order of the indices i1, . . . , i2k, there is a homotopy
of loops in the disk, fixing basepoint, that takes ρn+1 ◦ ζn+1

ℓ to a loop of the form
η1 ∗ · · · ∗ η2k, where ηr = δr ∗ σ(xir ) ∗ δ−1

r for some path δr : [0, 1] → Ĉn+1
⋆ with

δr(1) = σ(xir )(0). Thus, we may assume ρn+1 ◦ ζn+1
ℓ is of the form η1 ∗ · · · ∗ η2k, and

ρn+1 ◦ αn+1
ℓ = ρn+1 ◦ δn+1

ℓ ∗ η1 ∗ · · · ∗ η2k ∗ ρn+1 ◦ (δn+1
ℓ )−1.

Now we study (f ◦ ρn+1) ◦ αn+1
ℓ . Since deg(f, xi) = 1 for all i, we have f ◦ σ(xir ) =

σ(f(xir )) for all r. Moreover, f(xir ) = xjr for some jr, and so the loops γr := f ◦ ηr are
given by γr = f ◦ δr ∗ σ(xjr ) ∗ f ◦ δ−1

r . Using Lemma 4.7, we see that γ1 ∗ · · · ∗ γ2k is a
product of k loops whose ρn-lifts are loops and, in consequence, any ρn-lift of this loop
is also a loop.

To finish, we have
(f ◦ ρn+1) ◦ αn+1

ℓ = (f ◦ ρn+1) ◦ δn+1
ℓ ∗ γ1 ∗ · · · ∗ γ2k ∗ (f ◦ ρn+1) ◦ (δn+1

ℓ )−1.

Then, any ρn-lift of (f ◦ ρn+1) ◦ αn+1
ℓ is a loop. □



CHAPTER 5

Problems and related questions

In this chapter, we will discuss the current state of our research, outlining the points
where we left off and identifying objects that require further exploration.

The questions we pose primarily concern the concept of QOTC, introduced in Chap-
ter 4. The correct definition for generalizing a QOTE remains unclear. For now,
we say a branched covering map f : S2 → S2 is a quotient of towers of coverings
(QOTC) if there is a family of positive-genus surfaces Mn, a family of covering maps
Fn+1 : Mn+1 → Mn, and a family of finite branched covering maps ρn : Mn → S2 such
that f ◦ ρn+1 = ρn ◦ Fn+1. This gives the following commutative diagram:

· · · Mn+1 Mn · · · M1 M0

· · · S2 S2 · · · S2 S2

Fn+1

ρn+1 ρn

Fn F2

ρ1

F1

ρ0

f f f f

According to Theorem 4.5, every Thurston map f : S2 → S2 with a hyperbolic
orbifold and no periodic critical points is a QOTC. This leads us to question what
additional properties might be derived for the associated maps. For instance, can we
expect there is some r ≥ 2 such that deg(ρn) = r for all n ≥ 0? Compare this with
Corollary 4.6. Additionally, can we choose each ρn to be a regular branched covering
map? Can each Fn be chosen as regular covering maps? These questions concern the
index and normality of subgroups involved.

Recall that, for the case of a QOTE f , the map F : T 2 → T 2 is always a regular
covering map due to the abelian nature of the fundamental group of a torus. Additionally,
the associated projections ρ : T 2 → S2 in Theorem 4.3 were all selected as regular orbifold
covering maps.

Suppose now f : S2 → S2 is a QOTC. If there exists an associated surface MN

that is a torus, then all Mn must be tori since the coverings Fn are of finite degree.
Consequently, f is a QOTE and thus has a parabolic orbifold.

On the other hand, If f : S2 → S2 is a QOTC with some MN such that χ(MN ) < 0,
then all Mn also have negative Euler characteristic. An obvious question that arises in
this case is whether f has a hyperbolic orbifold. A priori, a QOTE could admit such a
tower of coverings in addition to the existing tower with tori.

Perhaps the most ambitious challenge would be attempting to generalize the ideas
presented in Chapter 3 to this setting. For example, can we expect deg(ρ0, ·) to be
constant on ρ−1

0 (x) for all x ∈ S2? Compare this with Theorem 3.3. If this holds true,
39
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can we infer a statement similar to Theorem 3.4? Specifically, is there some k ≥ 0 such
that ρ0 : M0 → Ok

f is an orbifold covering map?

On the other hand, in Chapter 3 we saw that, given a QOTE f : S2 → S2 with
associated maps F : T 2 → T 2 and ρ : T 2 → S2 not having the injectivity property, one
can find “more efficient” associated maps by factoring the existing ones. Specifically,
Lemma 3.8 shows how to obtain associated maps F ′ : T ′ → T ′ and ρ′ : T ′ → S2 for
f and a covering map G : T 2 → T ′ with deg(G) ≥ 2 such that the diagram below
commutes:

T 2 T 2

T ′ T ′

S2 S2

F

G

ρ

G

ρ
F ′

ρ′ ρ′

f

We now ask whether it is possible to establish a condition similar to non-ρ-injectivity
to factor maps associated with a QOTC. Additionally, if the given maps Fn and ρn

are efficient in the sense that they cannot be factored further, we inquire whether the
topology of the surfacesMn is thereby determined. In other words, we seek to understand
if the surfaces associated with a QOTC are unique up to factoring maps.

To conclude, it would also be valuable to understand what additional information
about a Thurston map f : S2 → S2 can be inferred solely from the tower of coverings
Fn : Mn+1 → Mn, beyond the orbifold structure. More precisely, might this informa-
tion provide insights into the dynamic behavior of f? Exploring this could deepen our
understanding of the interplay between topology and dynamics.
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