Cremona's table of elliptic curves

Curve 100254u1

100254 = 2 · 3 · 72 · 11 · 31



Data for elliptic curve 100254u1

Field Data Notes
Atkin-Lehner 2+ 3- 7- 11+ 31+ Signs for the Atkin-Lehner involutions
Class 100254u Isogeny class
Conductor 100254 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 74880 Modular degree for the optimal curve
Δ -12473201664 = -1 · 210 · 36 · 72 · 11 · 31 Discriminant
Eigenvalues 2+ 3- -1 7- 11+  5  7 -1 Hecke eigenvalues for primes up to 20
Equation [1,0,1,191,-5260] [a1,a2,a3,a4,a6]
Generators [43:266:1] Generators of the group modulo torsion
j 15844999079/254555136 j-invariant
L 6.0075030588387 L(r)(E,1)/r!
Ω 0.6178302435565 Real period
R 0.81029580624742 Regulator
r 1 Rank of the group of rational points
S 0.99999999915419 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 100254a1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations