Cremona's table of elliptic curves

Curve 100688bf1

100688 = 24 · 7 · 29 · 31



Data for elliptic curve 100688bf1

Field Data Notes
Atkin-Lehner 2- 7- 29+ 31- Signs for the Atkin-Lehner involutions
Class 100688bf Isogeny class
Conductor 100688 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 12441600 Modular degree for the optimal curve
Δ 8.0322976451652E+22 Discriminant
Eigenvalues 2- -2 -3 7- -4  4  7 -1 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-27199312,52859849364] [a1,a2,a3,a4,a6]
j 543297287214012431135953/19610101672766603264 j-invariant
L 1.2909343001572 L(r)(E,1)/r!
Ω 0.1075778695516 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 12586e1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations