Cremona's table of elliptic curves

Curve 101200br4

101200 = 24 · 52 · 11 · 23



Data for elliptic curve 101200br4

Field Data Notes
Atkin-Lehner 2- 5+ 11- 23- Signs for the Atkin-Lehner involutions
Class 101200br Isogeny class
Conductor 101200 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 3.1625E+19 Discriminant
Eigenvalues 2-  0 5+  0 11- -2 -2 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4448075,3600672250] [a1,a2,a3,a4,a6]
j 152075776363995609/494140625000 j-invariant
L 0.8363430871493 L(r)(E,1)/r!
Ω 0.20908583530828 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12650p3 20240n3 Quadratic twists by: -4 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations