Cremona's table of elliptic curves

Curve 10192bb3

10192 = 24 · 72 · 13



Data for elliptic curve 10192bb3

Field Data Notes
Atkin-Lehner 2- 7- 13+ Signs for the Atkin-Lehner involutions
Class 10192bb Isogeny class
Conductor 10192 Conductor
∏ cp 2 Product of Tamagawa factors cp
Δ -252798155281444864 = -1 · 212 · 715 · 13 Discriminant
Eigenvalues 2- -2  3 7-  0 13+  6 -7 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-91989,-26497661] [a1,a2,a3,a4,a6]
Generators [2141623370:-61620762273:2248091] Generators of the group modulo torsion
j -178643795968/524596891 j-invariant
L 3.7711086172998 L(r)(E,1)/r!
Ω 0.12681740199061 Real period
R 14.868261603321 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 637b3 40768dy3 91728ep3 1456h3 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations