Cremona's table of elliptic curves

Curve 102256b1

102256 = 24 · 7 · 11 · 83



Data for elliptic curve 102256b1

Field Data Notes
Atkin-Lehner 2+ 7+ 11+ 83- Signs for the Atkin-Lehner involutions
Class 102256b Isogeny class
Conductor 102256 Conductor
∏ cp 3 Product of Tamagawa factors cp
deg 78336 Modular degree for the optimal curve
Δ -85237431664 = -1 · 24 · 7 · 113 · 833 Discriminant
Eigenvalues 2+ -2  2 7+ 11+  0  1 -4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-1132,-20685] [a1,a2,a3,a4,a6]
j -10035213253888/5327339479 j-invariant
L 1.20454207034 L(r)(E,1)/r!
Ω 0.4015139732881 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 51128b1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations