Cremona's table of elliptic curves

Curve 10320v4

10320 = 24 · 3 · 5 · 43



Data for elliptic curve 10320v4

Field Data Notes
Atkin-Lehner 2- 3+ 5- 43+ Signs for the Atkin-Lehner involutions
Class 10320v Isogeny class
Conductor 10320 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 9321229097533440 = 215 · 32 · 5 · 436 Discriminant
Eigenvalues 2- 3+ 5- -2  6  2  0 -2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-82920,7957872] [a1,a2,a3,a4,a6]
Generators [-158:4134:1] Generators of the group modulo torsion
j 15393836938735081/2275690697640 j-invariant
L 4.1542538827821 L(r)(E,1)/r!
Ω 0.39329162239905 Real period
R 5.2813912707338 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 1290g4 41280db4 30960bf4 51600di4 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations