Cremona's table of elliptic curves

Curve 105525p3

105525 = 32 · 52 · 7 · 67



Data for elliptic curve 105525p3

Field Data Notes
Atkin-Lehner 3- 5+ 7+ 67- Signs for the Atkin-Lehner involutions
Class 105525p Isogeny class
Conductor 105525 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ -1781811265209609375 = -1 · 310 · 57 · 78 · 67 Discriminant
Eigenvalues  1 3- 5+ 7+ -4  6  6 -4 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,300708,-9882509] [a1,a2,a3,a4,a6]
Generators [3525522:117711139:10648] Generators of the group modulo torsion
j 264003869234951/156427875135 j-invariant
L 6.9279765836547 L(r)(E,1)/r!
Ω 0.15489114645388 Real period
R 11.182008653095 Regulator
r 1 Rank of the group of rational points
S 1.0000000034518 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 35175d3 21105l3 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations