Cremona's table of elliptic curves

Curve 106352h1

106352 = 24 · 172 · 23



Data for elliptic curve 106352h1

Field Data Notes
Atkin-Lehner 2- 17+ 23+ Signs for the Atkin-Lehner involutions
Class 106352h Isogeny class
Conductor 106352 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 36864 Modular degree for the optimal curve
Δ -8882625392 = -1 · 24 · 176 · 23 Discriminant
Eigenvalues 2-  1  0  2  0 -1 17+ -2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,482,-1841] [a1,a2,a3,a4,a6]
j 32000/23 j-invariant
L 1.4643315366529 L(r)(E,1)/r!
Ω 0.73216585113534 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 26588c1 368e1 Quadratic twists by: -4 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations