Cremona's table of elliptic curves

Curve 10695d1

10695 = 3 · 5 · 23 · 31



Data for elliptic curve 10695d1

Field Data Notes
Atkin-Lehner 3- 5+ 23- 31+ Signs for the Atkin-Lehner involutions
Class 10695d Isogeny class
Conductor 10695 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 3328 Modular degree for the optimal curve
Δ -1118964375 = -1 · 34 · 54 · 23 · 312 Discriminant
Eigenvalues  1 3- 5+  2  0 -2  0 -2 Hecke eigenvalues for primes up to 20
Equation [1,0,1,206,1151] [a1,a2,a3,a4,a6]
Generators [43:278:1] Generators of the group modulo torsion
j 973536925031/1118964375 j-invariant
L 6.2857205950773 L(r)(E,1)/r!
Ω 1.0311629499555 Real period
R 1.5239396923999 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 32085e1 53475a1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations