Cremona's table of elliptic curves

Curve 107712d2

107712 = 26 · 32 · 11 · 17



Data for elliptic curve 107712d2

Field Data Notes
Atkin-Lehner 2+ 3+ 11+ 17+ Signs for the Atkin-Lehner involutions
Class 107712d Isogeny class
Conductor 107712 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 1047262330771734528 = 218 · 33 · 116 · 174 Discriminant
Eigenvalues 2+ 3+  4 -2 11+  2 17+ -2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-85530828,-304461317520] [a1,a2,a3,a4,a6]
Generators [-176591348839425725761706975240:1076495099673448236771225148:33069983561459434661503375] Generators of the group modulo torsion
j 9776604686860471347243/147962546281 j-invariant
L 8.6023395752983 L(r)(E,1)/r!
Ω 0.04964424222778 Real period
R 43.319925664026 Regulator
r 1 Rank of the group of rational points
S 1.0000000050545 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 107712da2 1683c2 107712t2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations