Cremona's table of elliptic curves

Curve 108528x1

108528 = 24 · 3 · 7 · 17 · 19



Data for elliptic curve 108528x1

Field Data Notes
Atkin-Lehner 2- 3+ 7- 17- 19- Signs for the Atkin-Lehner involutions
Class 108528x Isogeny class
Conductor 108528 Conductor
∏ cp 90 Product of Tamagawa factors cp
deg 1728000 Modular degree for the optimal curve
Δ 187906902634450944 = 212 · 34 · 75 · 173 · 193 Discriminant
Eigenvalues 2- 3+  1 7-  2 -5 17- 19- Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-1403045,639797133] [a1,a2,a3,a4,a6]
Generators [164:20349:1] Generators of the group modulo torsion
j 74572529560399507456/45875708650989 j-invariant
L 6.4230523418802 L(r)(E,1)/r!
Ω 0.31574089571619 Real period
R 0.22603105581791 Regulator
r 1 Rank of the group of rational points
S 1.0000000030755 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 6783d1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations