Cremona's table of elliptic curves

Curve 10878bt1

10878 = 2 · 3 · 72 · 37



Data for elliptic curve 10878bt1

Field Data Notes
Atkin-Lehner 2- 3- 7- 37- Signs for the Atkin-Lehner involutions
Class 10878bt Isogeny class
Conductor 10878 Conductor
∏ cp 48 Product of Tamagawa factors cp
deg 4608 Modular degree for the optimal curve
Δ 87720192 = 28 · 33 · 73 · 37 Discriminant
Eigenvalues 2- 3-  0 7- -2 -6  8 -4 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-183,-855] [a1,a2,a3,a4,a6]
Generators [-6:9:1] Generators of the group modulo torsion
j 1976656375/255744 j-invariant
L 7.8694990902838 L(r)(E,1)/r!
Ω 1.3090669309346 Real period
R 0.50096108560989 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 87024cj1 32634bc1 10878bg1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations