Cremona's table of elliptic curves

Curve 109040g1

109040 = 24 · 5 · 29 · 47



Data for elliptic curve 109040g1

Field Data Notes
Atkin-Lehner 2- 5+ 29- 47+ Signs for the Atkin-Lehner involutions
Class 109040g Isogeny class
Conductor 109040 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 147456 Modular degree for the optimal curve
Δ -4933004492800 = -1 · 216 · 52 · 29 · 473 Discriminant
Eigenvalues 2-  0 5+  3  5  4 -6 -4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,1597,-103998] [a1,a2,a3,a4,a6]
Generators [161:2080:1] Generators of the group modulo torsion
j 109971085671/1204346800 j-invariant
L 7.1942284698084 L(r)(E,1)/r!
Ω 0.37856418351278 Real period
R 2.3754982536208 Regulator
r 1 Rank of the group of rational points
S 1.0000000021218 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 13630c1 Quadratic twists by: -4


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations