Cremona's table of elliptic curves

Curve 10925i1

10925 = 52 · 19 · 23



Data for elliptic curve 10925i1

Field Data Notes
Atkin-Lehner 5- 19- 23+ Signs for the Atkin-Lehner involutions
Class 10925i Isogeny class
Conductor 10925 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 14880 Modular degree for the optimal curve
Δ -3765837066625 = -1 · 53 · 195 · 233 Discriminant
Eigenvalues  1  0 5-  4 -1 -1  5 19- Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-1952,99581] [a1,a2,a3,a4,a6]
Generators [-20:371:1] Generators of the group modulo torsion
j -6582309243021/30126696533 j-invariant
L 5.7383854937657 L(r)(E,1)/r!
Ω 0.68352761193766 Real period
R 0.83952504530118 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 98325cr1 10925j1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations