Cremona's table of elliptic curves

Curve 110352ck1

110352 = 24 · 3 · 112 · 19



Data for elliptic curve 110352ck1

Field Data Notes
Atkin-Lehner 2- 3- 11- 19- Signs for the Atkin-Lehner involutions
Class 110352ck Isogeny class
Conductor 110352 Conductor
∏ cp 96 Product of Tamagawa factors cp
deg 2211840 Modular degree for the optimal curve
Δ 199168051890880512 = 220 · 33 · 117 · 192 Discriminant
Eigenvalues 2- 3- -2  0 11-  2 -2 19- Hecke eigenvalues for primes up to 20
Equation [0,1,0,-4334744,3472197012] [a1,a2,a3,a4,a6]
Generators [964:13794:1] Generators of the group modulo torsion
j 1241361053832817/27447552 j-invariant
L 7.8614898363228 L(r)(E,1)/r!
Ω 0.29353659338201 Real period
R 1.1159156492109 Regulator
r 1 Rank of the group of rational points
S 0.99999999493962 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 13794c1 10032q1 Quadratic twists by: -4 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations