Cremona's table of elliptic curves

Curve 110352f2

110352 = 24 · 3 · 112 · 19



Data for elliptic curve 110352f2

Field Data Notes
Atkin-Lehner 2+ 3+ 11- 19+ Signs for the Atkin-Lehner involutions
Class 110352f Isogeny class
Conductor 110352 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ -514906467486124032 = -1 · 211 · 32 · 118 · 194 Discriminant
Eigenvalues 2+ 3+  0 -2 11-  4 -2 19+ Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-475328,130933728] [a1,a2,a3,a4,a6]
Generators [-436:15972:1] [26:10890:1] Generators of the group modulo torsion
j -3273548323250/141919569 j-invariant
L 9.9541853925731 L(r)(E,1)/r!
Ω 0.29088760232152 Real period
R 2.1387525017161 Regulator
r 2 Rank of the group of rational points
S 0.99999999976288 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 55176o2 10032b2 Quadratic twists by: -4 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations