Cremona's table of elliptic curves

Curve 110400ek3

110400 = 26 · 3 · 52 · 23



Data for elliptic curve 110400ek3

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 23- Signs for the Atkin-Lehner involutions
Class 110400ek Isogeny class
Conductor 110400 Conductor
∏ cp 8 Product of Tamagawa factors cp
Δ 110400000000000000 = 218 · 3 · 514 · 23 Discriminant
Eigenvalues 2+ 3- 5+ -4  4 -2 -6 -8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-609633,182308863] [a1,a2,a3,a4,a6]
Generators [347121:335456:729] Generators of the group modulo torsion
j 6117442271569/26953125 j-invariant
L 6.2011046877733 L(r)(E,1)/r!
Ω 0.33535511737499 Real period
R 9.245579344624 Regulator
r 1 Rank of the group of rational points
S 0.99999999921642 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 110400ga3 1725d4 22080q3 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations