Cremona's table of elliptic curves

Curve 112850n2

112850 = 2 · 52 · 37 · 61



Data for elliptic curve 112850n2

Field Data Notes
Atkin-Lehner 2- 5+ 37+ 61- Signs for the Atkin-Lehner involutions
Class 112850n Isogeny class
Conductor 112850 Conductor
∏ cp 96 Product of Tamagawa factors cp
Δ -174343827025000000 = -1 · 26 · 58 · 374 · 612 Discriminant
Eigenvalues 2- -2 5+  4  6  2 -2  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-208938,-41908508] [a1,a2,a3,a4,a6]
Generators [4272:275414:1] Generators of the group modulo torsion
j -64558899070136281/11158004929600 j-invariant
L 10.172724391373 L(r)(E,1)/r!
Ω 0.11060792812382 Real period
R 3.8321259753788 Regulator
r 1 Rank of the group of rational points
S 1.0000000043907 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 22570d2 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations