Cremona's table of elliptic curves

Curve 11312h1

11312 = 24 · 7 · 101



Data for elliptic curve 11312h1

Field Data Notes
Atkin-Lehner 2+ 7- 101- Signs for the Atkin-Lehner involutions
Class 11312h Isogeny class
Conductor 11312 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 1920 Modular degree for the optimal curve
Δ 1266944 = 28 · 72 · 101 Discriminant
Eigenvalues 2+  2 -3 7-  0 -1 -3  1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-57,-139] [a1,a2,a3,a4,a6]
Generators [-4:3:1] Generators of the group modulo torsion
j 81415168/4949 j-invariant
L 5.3549394933861 L(r)(E,1)/r!
Ω 1.7415921758275 Real period
R 1.5373689568977 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 5656b1 45248bc1 101808l1 79184g1 Quadratic twists by: -4 8 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations