Cremona's table of elliptic curves

Curve 113680by1

113680 = 24 · 5 · 72 · 29



Data for elliptic curve 113680by1

Field Data Notes
Atkin-Lehner 2- 5- 7- 29- Signs for the Atkin-Lehner involutions
Class 113680by Isogeny class
Conductor 113680 Conductor
∏ cp 6 Product of Tamagawa factors cp
deg 193536 Modular degree for the optimal curve
Δ -11920211968000 = -1 · 226 · 53 · 72 · 29 Discriminant
Eigenvalues 2-  2 5- 7-  1 -2  1 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-16480,-825600] [a1,a2,a3,a4,a6]
Generators [288750:3195030:1331] Generators of the group modulo torsion
j -2466412193329/59392000 j-invariant
L 10.98596583203 L(r)(E,1)/r!
Ω 0.21038265678644 Real period
R 8.7031618134927 Regulator
r 1 Rank of the group of rational points
S 1.0000000003132 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 14210u1 113680x1 Quadratic twists by: -4 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations