Cremona's table of elliptic curves

Curve 114240el2

114240 = 26 · 3 · 5 · 7 · 17



Data for elliptic curve 114240el2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 7+ 17- Signs for the Atkin-Lehner involutions
Class 114240el Isogeny class
Conductor 114240 Conductor
∏ cp 720 Product of Tamagawa factors cp
Δ 6540083975577600000 = 216 · 33 · 55 · 72 · 176 Discriminant
Eigenvalues 2+ 3- 5- 7+ -4 -4 17- -6 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-7154145,7361790975] [a1,a2,a3,a4,a6]
Generators [1835:-20400:1] [-2517:97104:1] Generators of the group modulo torsion
j 617898380186522246116/99793761834375 j-invariant
L 14.000587528491 L(r)(E,1)/r!
Ω 0.22976431001804 Real period
R 0.33852534290137 Regulator
r 2 Rank of the group of rational points
S 0.99999999986623 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 114240hs2 14280c2 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations