Cremona's table of elliptic curves

Curve 114975be1

114975 = 32 · 52 · 7 · 73



Data for elliptic curve 114975be1

Field Data Notes
Atkin-Lehner 3- 5- 7+ 73+ Signs for the Atkin-Lehner involutions
Class 114975be Isogeny class
Conductor 114975 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 184320 Modular degree for the optimal curve
Δ -1018606640625 = -1 · 36 · 58 · 72 · 73 Discriminant
Eigenvalues  1 3- 5- 7+  3 -2  6  0 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-18117,-935334] [a1,a2,a3,a4,a6]
Generators [133972:6048501:64] Generators of the group modulo torsion
j -2309449585/3577 j-invariant
L 7.8034834235848 L(r)(E,1)/r!
Ω 0.20573422467658 Real period
R 9.4824809318133 Regulator
r 1 Rank of the group of rational points
S 0.99999999660618 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 12775j1 114975bb1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations