Cremona's table of elliptic curves

Curve 11532c2

11532 = 22 · 3 · 312



Data for elliptic curve 11532c2

Field Data Notes
Atkin-Lehner 2- 3+ 31- Signs for the Atkin-Lehner involutions
Class 11532c Isogeny class
Conductor 11532 Conductor
∏ cp 4 Product of Tamagawa factors cp
Δ -308391752882066544 = -1 · 24 · 36 · 319 Discriminant
Eigenvalues 2- 3+  3 -1  0 -2  0 -1 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-241128674,1441270911837] [a1,a2,a3,a4,a6]
Generators [1120255:73251:125] Generators of the group modulo torsion
j -109189315135671400192/21717639 j-invariant
L 4.6228049059773 L(r)(E,1)/r!
Ω 0.17832968544682 Real period
R 6.4807001907653 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 46128bc2 34596q2 372c2 Quadratic twists by: -4 -3 -31


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations