Cremona's table of elliptic curves

Curve 116160fv4

116160 = 26 · 3 · 5 · 112



Data for elliptic curve 116160fv4

Field Data Notes
Atkin-Lehner 2- 3+ 5+ 11- Signs for the Atkin-Lehner involutions
Class 116160fv Isogeny class
Conductor 116160 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 57470005739520 = 216 · 32 · 5 · 117 Discriminant
Eigenvalues 2- 3+ 5+  4 11-  2  2 -4 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-5111201,-4445966655] [a1,a2,a3,a4,a6]
Generators [24394911128:-616970064271:8365427] Generators of the group modulo torsion
j 127191074376964/495 j-invariant
L 6.6576069923643 L(r)(E,1)/r!
Ω 0.10040811354304 Real period
R 16.576366942175 Regulator
r 1 Rank of the group of rational points
S 1.0000000084296 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 116160ds4 29040bp4 10560bq3 Quadratic twists by: -4 8 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations