Cremona's table of elliptic curves

Curve 116550bd1

116550 = 2 · 32 · 52 · 7 · 37



Data for elliptic curve 116550bd1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7+ 37+ Signs for the Atkin-Lehner involutions
Class 116550bd Isogeny class
Conductor 116550 Conductor
∏ cp 64 Product of Tamagawa factors cp
deg 368640 Modular degree for the optimal curve
Δ -55758248437500 = -1 · 22 · 39 · 58 · 72 · 37 Discriminant
Eigenvalues 2+ 3- 5+ 7+  0  4 -2 -2 Hecke eigenvalues for primes up to 20
Equation [1,-1,0,-567,-359159] [a1,a2,a3,a4,a6]
Generators [149:-1762:1] [84:383:1] Generators of the group modulo torsion
j -1771561/4895100 j-invariant
L 9.0096053139233 L(r)(E,1)/r!
Ω 0.28473243668541 Real period
R 1.9776472922922 Regulator
r 2 Rank of the group of rational points
S 0.99999999943445 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 38850bu1 23310bn1 Quadratic twists by: -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations