Cremona's table of elliptic curves

Curve 11696m1

11696 = 24 · 17 · 43



Data for elliptic curve 11696m1

Field Data Notes
Atkin-Lehner 2- 17+ 43- Signs for the Atkin-Lehner involutions
Class 11696m Isogeny class
Conductor 11696 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 172800 Modular degree for the optimal curve
Δ -262224293339856896 = -1 · 232 · 175 · 43 Discriminant
Eigenvalues 2- -3  1  0  2  5 17+  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-99787,27462778] [a1,a2,a3,a4,a6]
Generators [2373:114688:1] Generators of the group modulo torsion
j -26827837227982881/64019602866176 j-invariant
L 3.2782462026299 L(r)(E,1)/r!
Ω 0.27496007462334 Real period
R 2.9806565617942 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 1462c1 46784w1 105264bx1 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations