Cremona's table of elliptic curves

Curve 117600cr1

117600 = 25 · 3 · 52 · 72



Data for elliptic curve 117600cr1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 7- Signs for the Atkin-Lehner involutions
Class 117600cr Isogeny class
Conductor 117600 Conductor
∏ cp 10 Product of Tamagawa factors cp
deg 316800 Modular degree for the optimal curve
Δ -2927483596800 = -1 · 212 · 35 · 52 · 76 Discriminant
Eigenvalues 2+ 3- 5+ 7-  0  5  0  5 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-35933,2611083] [a1,a2,a3,a4,a6]
Generators [109:-36:1] Generators of the group modulo torsion
j -425920000/243 j-invariant
L 9.7441519093472 L(r)(E,1)/r!
Ω 0.79341881717896 Real period
R 1.2281221052437 Regulator
r 1 Rank of the group of rational points
S 1.0000000029155 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 117600em1 117600fu1 2400c1 Quadratic twists by: -4 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations