Cremona's table of elliptic curves

Curve 119145a1

119145 = 3 · 5 · 132 · 47



Data for elliptic curve 119145a1

Field Data Notes
Atkin-Lehner 3+ 5+ 13+ 47+ Signs for the Atkin-Lehner involutions
Class 119145a Isogeny class
Conductor 119145 Conductor
∏ cp 1 Product of Tamagawa factors cp
deg 3231360 Modular degree for the optimal curve
Δ -3736140335637737625 = -1 · 33 · 53 · 136 · 475 Discriminant
Eigenvalues  1 3+ 5+  5 -6 13+ -3  1 Hecke eigenvalues for primes up to 20
Equation [1,1,0,-20283,92995362] [a1,a2,a3,a4,a6]
Generators [27759922695189286:832287980257263900:34198370078579] Generators of the group modulo torsion
j -191202526081/774039398625 j-invariant
L 5.5548414495437 L(r)(E,1)/r!
Ω 0.19962894998802 Real period
R 27.825831122575 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 705b1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations