Cremona's table of elliptic curves

Curve 119850ci1

119850 = 2 · 3 · 52 · 17 · 47



Data for elliptic curve 119850ci1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 17+ 47+ Signs for the Atkin-Lehner involutions
Class 119850ci Isogeny class
Conductor 119850 Conductor
∏ cp 1800 Product of Tamagawa factors cp
deg 300672000 Modular degree for the optimal curve
Δ 5.8791807908024E+29 Discriminant
Eigenvalues 2- 3- 5+  2 -4  6 17+ -6 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-4813772463,123143878383417] [a1,a2,a3,a4,a6]
Generators [22662:5057469:1] Generators of the group modulo torsion
j 789514954943448433109847035689/37626757061135661268992000 j-invariant
L 14.995346509605 L(r)(E,1)/r!
Ω 0.028685775403682 Real period
R 1.1616556217312 Regulator
r 1 Rank of the group of rational points
S 0.99999999946466 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 23970a1 Quadratic twists by: 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations