Cremona's table of elliptic curves

Curve 119952c1

119952 = 24 · 32 · 72 · 17



Data for elliptic curve 119952c1

Field Data Notes
Atkin-Lehner 2+ 3+ 7- 17+ Signs for the Atkin-Lehner involutions
Class 119952c Isogeny class
Conductor 119952 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 138240 Modular degree for the optimal curve
Δ 4852148603904 = 210 · 39 · 72 · 173 Discriminant
Eigenvalues 2+ 3+  1 7- -2  1 17+  2 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4347,30618] [a1,a2,a3,a4,a6]
j 9198252/4913 j-invariant
L 2.6950601626654 L(r)(E,1)/r!
Ω 0.67376518832219 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 59976x1 119952i1 119952b1 Quadratic twists by: -4 -3 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations