Cremona's table of elliptic curves

Curve 120666s1

120666 = 2 · 3 · 7 · 132 · 17



Data for elliptic curve 120666s1

Field Data Notes
Atkin-Lehner 2+ 3- 7+ 13+ 17+ Signs for the Atkin-Lehner involutions
Class 120666s Isogeny class
Conductor 120666 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 4992000 Modular degree for the optimal curve
Δ -4.5225479350786E+20 Discriminant
Eigenvalues 2+ 3- -2 7+ -4 13+ 17+ -3 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-312147,1025348014] [a1,a2,a3,a4,a6]
j -117767593035067417/15834697437339648 j-invariant
L 0.54673328145337 L(r)(E,1)/r!
Ω 0.13668316150649 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 120666cg1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations