Cremona's table of elliptic curves

Curve 12120j2

12120 = 23 · 3 · 5 · 101



Data for elliptic curve 12120j2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 101- Signs for the Atkin-Lehner involutions
Class 12120j Isogeny class
Conductor 12120 Conductor
∏ cp 64 Product of Tamagawa factors cp
Δ 428344070400 = 28 · 38 · 52 · 1012 Discriminant
Eigenvalues 2+ 3- 5-  0  0  6  2  4 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-2860,48800] [a1,a2,a3,a4,a6]
j 10109593391056/1673219025 j-invariant
L 3.6008058296501 L(r)(E,1)/r!
Ω 0.90020145741253 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 4 Number of elements in the torsion subgroup
Twists 24240f2 96960a2 36360l2 60600v2 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations