Cremona's table of elliptic curves

Curve 121275p1

121275 = 32 · 52 · 72 · 11



Data for elliptic curve 121275p1

Field Data Notes
Atkin-Lehner 3+ 5+ 7- 11+ Signs for the Atkin-Lehner involutions
Class 121275p Isogeny class
Conductor 121275 Conductor
∏ cp 8 Product of Tamagawa factors cp
deg 322560 Modular degree for the optimal curve
Δ -220636896046875 = -1 · 39 · 56 · 72 · 114 Discriminant
Eigenvalues  0 3+ 5+ 7- 11+  5 -4  3 Hecke eigenvalues for primes up to 20
Equation [0,0,1,-9450,-797344] [a1,a2,a3,a4,a6]
j -6193152/14641 j-invariant
L 1.8081704527225 L(r)(E,1)/r!
Ω 0.22602126700368 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 121275bb1 4851c1 121275b1 Quadratic twists by: -3 5 -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations