Cremona's table of elliptic curves

Curve 12138l4

12138 = 2 · 3 · 7 · 172



Data for elliptic curve 12138l4

Field Data Notes
Atkin-Lehner 2+ 3- 7- 17+ Signs for the Atkin-Lehner involutions
Class 12138l Isogeny class
Conductor 12138 Conductor
∏ cp 100 Product of Tamagawa factors cp
Δ 674471236591782 = 2 · 35 · 710 · 173 Discriminant
Eigenvalues 2+ 3- -2 7-  0  4 17+  0 Hecke eigenvalues for primes up to 20
Equation [1,0,1,-38112,-2579936] [a1,a2,a3,a4,a6]
Generators [-112:591:1] Generators of the group modulo torsion
j 1246079601667529/137282971014 j-invariant
L 3.9134975162825 L(r)(E,1)/r!
Ω 0.34413633709984 Real period
R 0.45487756965893 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 97104bk4 36414cs4 84966s4 12138a4 Quadratic twists by: -4 -3 -7 17


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations