Cremona's table of elliptic curves

Curve 121968ec3

121968 = 24 · 32 · 7 · 112



Data for elliptic curve 121968ec3

Field Data Notes
Atkin-Lehner 2- 3- 7+ 11- Signs for the Atkin-Lehner involutions
Class 121968ec Isogeny class
Conductor 121968 Conductor
∏ cp 16 Product of Tamagawa factors cp
Δ 242947069592629248 = 212 · 314 · 7 · 116 Discriminant
Eigenvalues 2- 3-  2 7+ 11-  2 -6  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-679899,-214474678] [a1,a2,a3,a4,a6]
j 6570725617/45927 j-invariant
L 2.6612839649726 L(r)(E,1)/r!
Ω 0.16633031079429 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 4 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 7623p4 40656bk3 1008k4 Quadratic twists by: -4 -3 -11


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations