Cremona's table of elliptic curves

Curve 123200cv2

123200 = 26 · 52 · 7 · 11



Data for elliptic curve 123200cv2

Field Data Notes
Atkin-Lehner 2+ 5- 7+ 11- Signs for the Atkin-Lehner involutions
Class 123200cv Isogeny class
Conductor 123200 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -1517824000000000 = -1 · 217 · 59 · 72 · 112 Discriminant
Eigenvalues 2+  0 5- 7+ 11-  2  0  4 Hecke eigenvalues for primes up to 20
Equation [0,0,0,8500,-1850000] [a1,a2,a3,a4,a6]
Generators [2350:114000:1] Generators of the group modulo torsion
j 265302/5929 j-invariant
L 6.4280935799905 L(r)(E,1)/r!
Ω 0.23135668330834 Real period
R 3.4730429275179 Regulator
r 1 Rank of the group of rational points
S 1.0000000059747 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 123200hj2 15400i2 123200dm2 Quadratic twists by: -4 8 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations