Cremona's table of elliptic curves

Curve 123539f1

123539 = 132 · 17 · 43



Data for elliptic curve 123539f1

Field Data Notes
Atkin-Lehner 13+ 17+ 43- Signs for the Atkin-Lehner involutions
Class 123539f Isogeny class
Conductor 123539 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 556608 Modular degree for the optimal curve
Δ -1713167478207523 = -1 · 1310 · 172 · 43 Discriminant
Eigenvalues  0  2 -2 -2  5 13+ 17+  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,1,19041,1709164] [a1,a2,a3,a4,a6]
j 5537792/12427 j-invariant
L 0.65629037055986 L(r)(E,1)/r!
Ω 0.32814468660678 Real period
R 1 Regulator
r 0 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 123539e1 Quadratic twists by: 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations