Cremona's table of elliptic curves

Curve 123840cn2

123840 = 26 · 32 · 5 · 43



Data for elliptic curve 123840cn2

Field Data Notes
Atkin-Lehner 2+ 3- 5- 43+ Signs for the Atkin-Lehner involutions
Class 123840cn Isogeny class
Conductor 123840 Conductor
∏ cp 32 Product of Tamagawa factors cp
Δ -804974107852800 = -1 · 215 · 312 · 52 · 432 Discriminant
Eigenvalues 2+ 3- 5-  2  0 -2 -2  8 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-4332,-1369456] [a1,a2,a3,a4,a6]
Generators [293:4745:1] Generators of the group modulo torsion
j -376367048/33698025 j-invariant
L 9.0799797174223 L(r)(E,1)/r!
Ω 0.22226051119649 Real period
R 5.1066087252809 Regulator
r 1 Rank of the group of rational points
S 0.9999999990453 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 123840dd2 61920p2 41280c2 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations