Cremona's table of elliptic curves

Curve 123840gf4

123840 = 26 · 32 · 5 · 43



Data for elliptic curve 123840gf4

Field Data Notes
Atkin-Lehner 2- 3- 5- 43- Signs for the Atkin-Lehner involutions
Class 123840gf Isogeny class
Conductor 123840 Conductor
∏ cp 192 Product of Tamagawa factors cp
Δ 1504656000000000000 = 216 · 37 · 512 · 43 Discriminant
Eigenvalues 2- 3- 5-  0  0  2  2  0 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-286572,-1887536] [a1,a2,a3,a4,a6]
Generators [-382:7200:1] Generators of the group modulo torsion
j 54477543627364/31494140625 j-invariant
L 8.1381743742034 L(r)(E,1)/r!
Ω 0.22571421754086 Real period
R 0.75115027869241 Regulator
r 1 Rank of the group of rational points
S 1.0000000121025 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 123840ck4 30960c4 41280cy4 Quadratic twists by: -4 8 -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations