Cremona's table of elliptic curves

Curve 124384h1

124384 = 25 · 132 · 23



Data for elliptic curve 124384h1

Field Data Notes
Atkin-Lehner 2+ 13- 23- Signs for the Atkin-Lehner involutions
Class 124384h Isogeny class
Conductor 124384 Conductor
∏ cp 12 Product of Tamagawa factors cp
deg 2036736 Modular degree for the optimal curve
Δ -528486170096807936 = -1 · 212 · 139 · 233 Discriminant
Eigenvalues 2+ -3  1  0  3 13-  2  3 Hecke eigenvalues for primes up to 20
Equation [0,0,0,-826072,291093712] [a1,a2,a3,a4,a6]
Generators [1521:50531:1] Generators of the group modulo torsion
j -1435249152/12167 j-invariant
L 4.751175227961 L(r)(E,1)/r!
Ω 0.29434164858873 Real period
R 1.3451418375906 Regulator
r 1 Rank of the group of rational points
S 1.000000007412 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 124384g1 124384t1 Quadratic twists by: -4 13


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations