Cremona's table of elliptic curves

Curve 12450w4

12450 = 2 · 3 · 52 · 83



Data for elliptic curve 12450w4

Field Data Notes
Atkin-Lehner 2- 3- 5+ 83+ Signs for the Atkin-Lehner involutions
Class 12450w Isogeny class
Conductor 12450 Conductor
∏ cp 168 Product of Tamagawa factors cp
Δ -1.0010739585937E+21 Discriminant
Eigenvalues 2- 3- 5+  0 -4 -2  6  0 Hecke eigenvalues for primes up to 20
Equation [1,0,0,-1781713,1776149417] [a1,a2,a3,a4,a6]
Generators [38:41315:1] Generators of the group modulo torsion
j -40032890408196055369/64068733350000000 j-invariant
L 8.1522127948699 L(r)(E,1)/r!
Ω 0.14002313987049 Real period
R 1.3862016293827 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 99600bv3 37350r3 2490c4 Quadratic twists by: -4 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations