Cremona's table of elliptic curves

Curve 12480bc1

12480 = 26 · 3 · 5 · 13



Data for elliptic curve 12480bc1

Field Data Notes
Atkin-Lehner 2+ 3- 5+ 13- Signs for the Atkin-Lehner involutions
Class 12480bc Isogeny class
Conductor 12480 Conductor
∏ cp 16 Product of Tamagawa factors cp
deg 3072 Modular degree for the optimal curve
Δ 26956800 = 210 · 34 · 52 · 13 Discriminant
Eigenvalues 2+ 3- 5+ -2  2 13- -2  2 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-421,3179] [a1,a2,a3,a4,a6]
Generators [-1:60:1] Generators of the group modulo torsion
j 8077950976/26325 j-invariant
L 5.0558079745367 L(r)(E,1)/r!
Ω 2.118898395252 Real period
R 0.59651373396026 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 12480bu1 780a1 37440cr1 62400h1 Quadratic twists by: -4 8 -3 5


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations