Cremona's table of elliptic curves

Curve 124830cd1

124830 = 2 · 32 · 5 · 19 · 73



Data for elliptic curve 124830cd1

Field Data Notes
Atkin-Lehner 2- 3- 5+ 19+ 73- Signs for the Atkin-Lehner involutions
Class 124830cd Isogeny class
Conductor 124830 Conductor
∏ cp 128 Product of Tamagawa factors cp
deg 393216 Modular degree for the optimal curve
Δ 4969871769600 = 216 · 37 · 52 · 19 · 73 Discriminant
Eigenvalues 2- 3- 5+ -4 -4  2 -2 19+ Hecke eigenvalues for primes up to 20
Equation [1,-1,1,-20273,1110881] [a1,a2,a3,a4,a6]
Generators [-155:792:1] [-105:1492:1] Generators of the group modulo torsion
j 1263950777455561/6817382400 j-invariant
L 14.854367781704 L(r)(E,1)/r!
Ω 0.7724305146765 Real period
R 0.60095890096703 Regulator
r 2 Rank of the group of rational points
S 1.0000000000105 (Analytic) order of Ш
t 2 Number of elements in the torsion subgroup
Twists 41610t1 Quadratic twists by: -3


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations