Cremona's table of elliptic curves

Curve 125048s1

125048 = 23 · 72 · 11 · 29



Data for elliptic curve 125048s1

Field Data Notes
Atkin-Lehner 2- 7- 11+ 29+ Signs for the Atkin-Lehner involutions
Class 125048s Isogeny class
Conductor 125048 Conductor
∏ cp 4 Product of Tamagawa factors cp
deg 275968 Modular degree for the optimal curve
Δ 205964810128 = 24 · 79 · 11 · 29 Discriminant
Eigenvalues 2- -1  2 7- 11+ -3 -8  2 Hecke eigenvalues for primes up to 20
Equation [0,-1,0,-50192,-4311383] [a1,a2,a3,a4,a6]
Generators [768:20237:1] Generators of the group modulo torsion
j 21658756864/319 j-invariant
L 4.5083950486819 L(r)(E,1)/r!
Ω 0.31896320906427 Real period
R 3.5336325002363 Regulator
r 1 Rank of the group of rational points
S 1.0000000002141 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 125048q1 Quadratic twists by: -7


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations