Cremona's table of elliptic curves

Curve 125120bp1

125120 = 26 · 5 · 17 · 23



Data for elliptic curve 125120bp1

Field Data Notes
Atkin-Lehner 2- 5+ 17+ 23- Signs for the Atkin-Lehner involutions
Class 125120bp Isogeny class
Conductor 125120 Conductor
∏ cp 2 Product of Tamagawa factors cp
deg 15482880 Modular degree for the optimal curve
Δ -1.2512E+19 Discriminant
Eigenvalues 2-  1 5+  2  1  4 17+ -8 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-490684801,-4183781564801] [a1,a2,a3,a4,a6]
Generators [172535888396147903198242515134744527181049300399516301697847007898572988695422229170874380964800023090448984713671012939946252098424688311743629462271261086613923:64699023482521726101324858098835060071674786570386065204767771035813224772634920647007102992196404969708543871329983536497328348016586707032915131600494491387791572:1196345631316329288224964517982595443408263922153738154251049470731150061415751452041027247978697739243516570844794087743877114217135300886011683189183718599] Generators of the group modulo torsion
j -49841557909700385914920801/47729492187500 j-invariant
L 8.0469086190372 L(r)(E,1)/r!
Ω 0.016038690521924 Real period
R 250.85927707244 Regulator
r 1 Rank of the group of rational points
S 1 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 125120f1 31280x1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations