Cremona's table of elliptic curves

Curve 125504d1

125504 = 26 · 37 · 53



Data for elliptic curve 125504d1

Field Data Notes
Atkin-Lehner 2+ 37- 53- Signs for the Atkin-Lehner involutions
Class 125504d Isogeny class
Conductor 125504 Conductor
∏ cp 20 Product of Tamagawa factors cp
deg 7756800 Modular degree for the optimal curve
Δ -4802558861598785536 = -1 · 223 · 372 · 535 Discriminant
Eigenvalues 2+ -2 -3  4  5  2  5  0 Hecke eigenvalues for primes up to 20
Equation [0,1,0,-13201537,18458161119] [a1,a2,a3,a4,a6]
Generators [3298:103933:1] Generators of the group modulo torsion
j -970638056074980108577/18320308157344 j-invariant
L 4.8083920934441 L(r)(E,1)/r!
Ω 0.22419626158878 Real period
R 1.072362236113 Regulator
r 1 Rank of the group of rational points
S 1.0000000011093 (Analytic) order of Ш
t 1 Number of elements in the torsion subgroup
Twists 125504j1 3922b1 Quadratic twists by: -4 8


Data from Elliptic Curve Data by J. E. Cremona.
Design inspired by The Modular Forms Explorer by William Stein.

Part of Computational Number Theory
Back to Tables and computations